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Abstract—Missing data is a critical pitfall in the investigation
of remotely sensed displacement measurement, because it pre-
vents from a full understanding of the physical phenomenon
under observation. In the sight of reconstructing incomplete
displacement data, this paper presents a data-driven spatio-
temporal gap-filling method, which is an extension of the Ex-
pectation Maximization-Empirical Orthogonal Functions (EM-
EOF) method. The presented method decomposes an augmented
spatio-temporal covariance of a displacement time series into
empirical orthogonal function (EOF) modes and then selects the
optimal set of EOF modes to reconstruct the time series.This
selection is based on the cross-validation root-mean-square error
and a confidence index associated with each eigenvalue. The
estimated missing values are then iteratively updated until
convergence. Results on displacement time series derived from
cross-correlation of Sentinel-2 optical images over Fox Glacier
in New-Zealand’s Alps show that the reconstruction accuracy
is improved compared to the EM-EOF method. The proposed
extension can tackle challenging cases, i.e. short time series with
heterogeneous displacement behaviors corrupted by large amount
of missing data and noise.

Index Terms—Gap-filling, covariance, EOF, displacement time
series.

I. INTRODUCTION

The analysis of Earth’s surface displacement is a thriving
subject in remote sensing. In recent years, remotely sensed
measurements of surface displacement have been significantly
improved with new advanced multi-temporal methods [1],
[2]. Despite this breakthrough, displacement time series are
often subject to missing data in space and time dimensions.
Data incompleteness is mainly due to technical limitations of
the displacement computation methods (e.g. cross-correlation,
differential interferometry) and/or surface property changes of
the observed target. Such incompleteness is critical in earth
sciences because it can impair the complete understanding
of physical processes such as glacier sliding or crustal defor-
mation. An accurate and efficient missing data reconstruction
method, operating in both space and time, is thus needed to
improve data completeness and reduce data uncertainty for
remote sensing applications.

However, missing data in remotely sensed displacement
measurement has not been drawn significant attention. Existing
methods, e.g. Kriging, regression analysis, or spline interpo-
lation are mainly focused on spatial or temporal interpolation
only, which limits the use of the full spatio-temporal informa-
tion [3]. Very recently, [4] proposed a method called EM-EOF

(Expectation Maximization-Empirical Orthogonal Functions),
based on the EOF analysis of the temporal covariance of a
displacement time series for missing data reconstruction. This
technique iteratively decomposes the temporal covariance of
the time series and estimates the optimal number of EOF
modes to reconstruct the data, i.e. fills in the gaps and extracts
significant trends from noisy data [5]. Promising results were
obtained with time series of incomplete Sentinel-1 InSAR
displacement measurement over Alpine glaciers. However, the
EM-EOF method may present some limitations when i) the
time series is small in length, ii) spatial correlation of the
ground displacement field prevails overs temporal correlation
and iii) the displacement field contains heterogeneous and
local spatial features. In particular, as EM-EOF uses temporal
covariance decomposition, reconstruction biases may arise
when a pixel is never observed through the time series.
These motivate us to employ the spatio-temporal covariance
of the time series in order to take both temporal and spatial
correlation of the displacement field into account.

For this, it is possible to augment the data by including
lagged copies of itself in a larger sequence of data. Methods
such as multivariate singular spectrum analysis (M-SSA) [6]
use time lagged information to form an augmented covariance
matrix and find propagating or periodic signals [7]. M-SSA
has proven to be a good parametric-free method to decompose
geophysical signals into separate components (e.g. trends,
oscillations and noise) and to impute missing values [8], [9].
However, it is not particularly adapted to short time series with
large spatial dimension. In [10], an implementation of SSA
was extended to a single 2D image. This method operates first
by a spatial augmentation of the data matrix into a Hankel-
block-Hankel (HbH) matrix. Then, a low-rank approximation
is performed from the singular value decomposition (SVD) of
the data covariance. In the case of time series of 2D images,
significant adaptations are still necessary for spatio-temporal
covariance estimation.

The aim of this paper is to introduce an extension to the
EM-EOF method (called extended EM-EOF hereafter): spatial
lagged information is used to augment a time series of 2D
displacement fields, which extends the principle of 2D-SSA to
time series of 2D images. Because of the specific structure of
the lagged spatio-temporal covariance, the direct link between
the EOF modes and the physical interpretation is not obvious:
a novel criterion, issued from a correlation-based uncertainty
analysis of the eigenvalues, is proposed for selecting the
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optimal sets of EOF modes. An approximation of the spatial
lag range is also provided using a correlation-based approach.
The proposed method is parameter-free and only relies on the
data. In the next section, the extended EM-EOF method is
described. An application to incomplete surface velocity data
obtained from cross-correlation of Sentinel-2 images over Fox
glacier in New Zealand [11] is presented in section III. Finally,
the conclusions are drawn in section IV.

II. THE EXTENDED EM-EOF METHOD

Starting from an appropriate initialization of missing values,
the extended EM-EOF method is divided into two stages. At
stage 1, the spatio-temporal covariance of the time series is
constructed and decomposed into EOF modes. The appropriate
number of EOF modes (denoted by R) to reconstruct the time
series is estimated by minimizing the root-mean-square error
between cross-validated data and the reconstructed field (cross-
RMSE). Stage 2 follows an EM-like scheme: during the E step,
missing data are estimated given the observed data and the
current estimate of the covariance matrix. The M step consists
of a minimization of the error between the reconstructed data
with a fixed number of EOF modes. This process iteratively
converges to a minimum error. Once the convergence is
reached, the process starts again with an additional EOF mode.
Note that at each iteration, the estimated values are used as
an initialization of the missing values for the next iteration.

A. Data organization and covariance estimation

Let Xt be a spatial grid of size Px × Py observed at
time t = 1, . . . , N , where each element at position (i, j)
is noted xij(t), 1 ≤ i ≤ Px, 1 ≤ j ≤ Py . All observa-
tions of Xt are stacked into a spatio-temporal data matrix
Y = (X1,X2, . . . ,XN ). Note that in practice each Xt

has zero mean, i.e. its spatial mean is removed. Each Xt

is augmented into a Hankel-block Hankel (HbH) matrix Dt

of size KxKy × MxMy , with Kx = (Px − Mx + 1),
Ky = (Py − My + 1) and where (Mx,My) is a two-
dimensional window sliding through each Xt (see Fig. 1):

Dt =


H1,t H2,t . . . HMx,t

H2,t H3,t . .
. ...

... . .
.

. .
. ...

HKx,t . . . . . . HPx,t

 (1)

Each matrix Hi,t is a Ky ×My Hankel matrix defined as:

Hi,t =


xi1(t) xi2(t) . . . xi,My

(t)

xi2(t) xi3(t) . .
. ...

... . .
.

. .
. ...

xi,Ky (t) . . . . . . xi,Py (t)

 (2)

In the following, we note K = KxKy , M = MxMy and
P = PxPy for the sake of convenience. Similarly to Y , each
matrix Dt is stacked into a spatio-temporal matrix D of size
(K ×NM), that is D = (D1,D2, . . . ,DN ).

In reference to multi-channel singular spectral analysis
(M-SSA) [6], D is called the augmented data matrix. The

difference here is that each matrix Xt is augmented in space
instead of time, so that the original one-dimensional window
of length M used in M-SSA is now a two-dimensional window
of size Mx × My as in 2D-SSA [10], and the considered
augmented matrix is spatio-temporal.

The NM ×NM spatio-temporal lagged covariance of D
is given by:

Ĉ =
1

K
DTD (3)

Entrywise, Ĉ is the sum of the cross-products of the
entries of D, given by Ĉij = 1

K

∑K
k=1DkiDkj with i, j =

1, . . . ,MN .

Fig. 1: Data organization (illustration with M = 9 and K = 16).
A M -samples spatial window (in red) is applied to each Xt and
translated through K possible positions. Each view of the M -samples
window is then vectorized and put into a K ×M ×N intermediary
matrix. Finally, sub-dimension M ×N is flattened into K vectors to
get matrix D.

B. Decomposition of the covariance

The eigenvalue decomposition (EVD) of matrix Ĉ yields
to:

Ĉ
EVD
=

NM∑
i=1

λiuiu
T
i (4)

where vectors ui are the NM extended EOFs (EEOFs) of
matrix D. Eq. (4) comes from the spectral representation
theorem, and each of its terms is called an EOF mode [4].
The fraction of total variance explained by EOF mode i is
indicated by the value λi/

∑
i λi: in general, the first EOF

modes represent most of the variability of the signal in Y .
To reconstruct Y , one needs to first define the principal

components (PC’s) ak with 1 ≤ k ≤ NM , which are the
projections of the augmented matrix on each EEOF:

aik =

NM∑
j=1

Dijujk, i = 1, . . . ,K (5)

Note that each PC has length K. The augmented matrix can
be partially or fully reconstructed by projecting the PC’s on
the corresponding extended eigenvectors. If A is the K×NM
matrix containing the PC’s in its columns and U is the right-
eigenvector matrix obtained from the EVD of Ĉ, then the
reconstruction takes the form D̂ = AU , where each element
of D̂ is given by

D̂ij =

NM∑
k=1

aikujk (6)
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Then, diagonal averaging, called hankelization, is applied
successively to each matrix Hi,t and to each matrix Dt, so
that we have the following averaging:

xij(t) =
1

#Aj

∑
(l,l′)∈Aj

xll′(t) (7)

Hi,t =
1

#Bi

∑
(l,l′)∈Bi

Hll′,t (8)

with Aj = {(l, l′) : 1 ≤ l ≤ Ky, 1 ≤ l′ ≤My, l+ l′ = j+ 1},
Bi = {(l, l′) : 1 ≤ l ≤ Kx, 1 ≤ l′ ≤ Mx, l + l′ = i + 1} and
# is the cardinality of sets Aj and Bi.

The reconstructed data matrix, noted Ŷ , is finally retrieved
from D̂ by reversing the process of Fig. 1 (simple one-to-
one correspondence). Note that the truncation of Eq. (6) by
a number R � MN of EEOFs allows to remove the non-
significant part of the signal, (e.g. noise). The choice of the
appropriate truncation is discussed is the next subsection.

C. Selection of the optimal number of EOF modes

To estimate the optimal number of EOF modes R, the
cross-RMSE is used as a metric [4]. Cross-RMSE is the `2-
norm of the difference between a cross-validation data set
Y ∈ Y and its estimate based on k EEOFs Ŷk. Cross-
RMSE {ε1, . . . , εMN} is computed with εk = 1

MN ||Ŷk−Y||2.
The optimal number of EOF modes is then found as the
one that minimizes the cross-RMSE. As underlined in [4],
strong mixing between correlated noise and true signal (e.g.
displacement signal) can lead to an over-estimation of the
number of EOFs modes, which can be explained by the
contamination of cross-validation data by noise. To overcome
this issue, a tuning criterion was proposed in [4], which can
be limited in the case of degenerate eigenvalues. Degeneracy
(close eigenvalue) and/or separation (distant eigenvalue) in
the eigenvalue spectrum provides useful information on both
signal frequencies distribution and spatio-temporal variability.
Degeneracy of eigenvalues makes the interpretation of the
corresponding EOFs difficult since any linear combination
of these EOFs is also an EOF, which leads to a mixing
of the EOFs [7]. Two or multiple consecutive eigenvalues
(called multiplet) are degenerate when the uncertainty of an
eigenvalue is comparable with or larger than the spacing
between this eigenvalue and its closest neighbor. Therefore, to
investigate multiplet degeneracy, the uncertainty of eigenvalues
must be first estimated. [12] proposed a ”rule of thumb” to
approximate the eigenvalue uncertainty:

∆λk ≈
√

2

L∗
λk ∆uk ≈

∆λk
λj − λk

uj (9)

where λj is the closest eigenvalue from λk, uj , uk are the
corresponding eigenvectors, L∗ is the number of independent
observations in the spatio-temporal sample also called effective
sample size (named ESS hereafter). The interpretation of
Eq. (9) is the following: if the uncertainty of eigenvalue λk is
close to the difference between this eigenvalue and its closest
neighbor, then the corresponding eigenvectors are likely to be
contaminated one by each other. This contamination exists

when, for example, two eigenvectors describe together the
same spatio-temporal pattern or if the signal is perturbed
by correlated noise, which has the effect of ”spreading” the
variance over the spectrum. To estimate the spatio-temporal
ESS L∗, we separate it into two distinct parts such that
L∗ = N∗M∗. N∗ corresponds to the temporal ESS and
M∗ to the spatial ESS. [13] have given an estimation of
N∗ by N

[
1 + 2

∑N−1
k=1 (1 − k

N )ρ(k)
]−1

, where ρ(k) is the
autocorrelation of the time series and N is the number of
observations in time. This definition holds for a univariate
time series of N observations, e.g. a pixel value varying over
time. Following this definition, we estimate the spatial ESS
M∗ within each spatial window of size M by

M∗ = M

(
1 + 2ν

M∑
k=1

(1− k

M
)

)−1

(10)

where ν = 1
N

∑N
t=1 It is the average spatial autocorrelation

and It is the Moran’s I statistics of spatial field Xt.
Based on the estimated uncertainty of eigenvalues given

in Eq. (9), a measure of confidence Ck associated with each
eigenvalue λk can be computed in the [0, 1] interval:

Ck =
max(Γk)− Γk

max(Γk)−min(Γk)
k = 1, . . . , NM (11)

with Γk = log
(

∆λk

λj−λk

)
. Ck allows to detect degeneracy

and/or separation of the eigenvalues in the spectrum of D,
which respectively correspond to lower and higher values of
Ck. That is, any peak in Ck coincides with a separation between
two eigenvalue multiplets whereas lower ”sidepeak” values
correspond to degeneracy of a multiplet or close eigenvalues.

To refine the optimal number of EOF modes R previ-
ously determined using the cross-RMSE, Ck is computed for
k = 1, . . . ,MN . Then, the peaks in Ck corresponding to
the separations in the eigenvalue spectrum are detected. If
R corresponds to a peak of Ck, the algorithm stops here.
Otherwise, if a subsequent Ck is high enough (e.g. Ck ≥ 0.8),
the optimal number is updated so that it matches index k.

D. Determination of the spatial lag M

The choice of M is generally dictated by a trade-off between
the amount of information extracted in the window (M should
be large) and the number of repetitions of the window within
each image (M should be small) [14]. Instead of a single
value, a range of M can provide satisfactory results. In this
paper, two metrics are proposed to determine the range of M .
The first metric is based on the covariance estimation theory,
that is, the number of independent samples should be at least
twice the number of variables. Thus, the maximum value of M
can be determined by solving K > 2M . Simple calculations
lead approximately to M < P/6. The second metric is based
on the spatial auto-correlation property of the displacement
field. Let τ be the spatial decorrelation decay defined as τ =
− ∆P

log r , where r is the lag-one auto-correlation and ∆P is the
spatial sampling rate, here 1 pixel. Following [6], M can be
approximated by M ' P/τ . In most cases, r is supposed to
be smaller than 0.95, which gives M > P/20.
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III. APPLICATION TO GLACIER SURFACE FLOW VELOCITY

The extended EM-EOF method is applied to surface velocity
data obtained from cross-correlation of Sentinel-2 images over
Fox glacier in New Zealand [11]. The data set consists of
a time series of 12 velocity fields extending from February
to mid-September 2018 (Fig. 2). Each velocity field has a
temporal baseline ranging from 10 to 40 days. The grid size
of each velocity field is 100 × 150. All velocity fields contain
missing data which correspond to discarded values due to low
correlation : their quantity per velocity field varies from 10%
to 60%. Missing values are initialized by the spatial mean.
The number of cross-validation points, which are randomly
chosen, is set to 1% of the observed points per velocity field.
The spatial lag is fixed to M = 225 (window of size 15×15),
which, considering the quantity of points over the glacier,
roughly corresponds to the lower limit of the lag.

Results of the reconstruction are shown in Fig. 3, with
an estimated optimal number of EOF modes of 13. Fig. 4
shows the scree plot (Fig. 4a), as well as the confidence
index Ck associated with each eigenvalue (Fig. 4b). The
estimated number of EOF modes corresponds to a peak in
Ck, which coincides to a break in the eigenvalue spectrum.
Eigenvalues λ1 to λ4 and three multiplets corresponding to
sets {λ5 − λ7}, {λ8 − λ11} and {λ12, λ13} are kept in the
reconstructed data. Reconstructed surface flows show that
seasonal variations are retrieved and similar to the observations
in [11]. Velocities reach 1500 m/year in the lower part of the
glacier, which is consistent with the maximum speed of 4.5
m/day below the main ice fall of Fox Glacier [15].

Time series of surface velocity over three locations, P1, P2,
and P3, are shown in Fig. 5. P1 corresponds to the location
picked in [11] and P2 is closer to the glacier central flowline.
P3 is located in the lower part of the glacier and its time series
contains only one observed value (2018-02-01) due to the
rapid surface velocity. Time series at P1 location is complete
whereas the one at P2 contains missing values. As P1 and P2
are close to each other, we consider that the seasonal variation
only differs by a scale factor over these two points. Thus,
the temporal evolution trend over P1 can be used to validate
the reconstructed displacement values over P2. Reconstructed
values at location P2 are globally consistent with observed
values in the time series (inside the error bar in most cases).
Reconstruction at location P3 shows that the seasonal trend
is retrieved, despite the large amount of missing data. The
extended EM-EOF gives improved results compared to the
EM-EOF method with a gain of '15 m/year on average in
accuracy, especially when data gaps are large (from April to
August). This observation highlights the contribution of the
exploitation of both spatial and temporal correlation in the re-
construction, as supported by synthetic simulations (Figs. S2-
S3 in the supplementary material). The reconstruction also
corrects spatial artifacts in the higher part of the displacement
(e.g. 2018-08-31/09-19), which is underpinned by simulations
(Figs. S1 and S4). Note also that the reconstruction of 2018-
07-15 by both EM-EOF and extended EM-EOF is smaller than
the observed values. Detailed inspection suggests that this is
mainly due to the presence of outliers at the edge of some

discontinuous areas in the initial data.

IV. CONCLUSION

In this paper, an extention of the EM-EOF method [4] is
presented for missing data imputation in displacement time
series. The temporal covariance matrix is extended to a spatio-
temporal covariance by augmenting the data in space. A
robust selection of the number of EOF modes based on i)
cross-validation and ii) uncertainty analysis of the eigenvalues
is also proposed. For the latter, the problem of eigenvalue
degeneracy is addressed by extending the rule of thumb of [12]
with spatio-temporal sampling, and a measure of confidence
associated with each eigenvalue is derived to select the optimal
set of EOF modes. In addition, spatial lag range is provided
using simple guidelines from both covariance estimation the-
ory and spatial decorrelation. An application to displacement
time series over Fox Glacier, New Zealand is presented to
show the ability of the proposed method to interpolate short
time series of 2D displacement fields with large amount of
spatially correlated data gaps. The extended EM-EOF method
is able to separate and extract the displacement signal from
perturbations even when a few data is available in time. This
observation is supported by the retrieval of seasonal variations
in the reconstructed surface velocities. The comparison with
the EM-EOF method also shows a gain in accuracy. This new
tool can help to increase the effective size of a short and
incomplete time series: it also goes a step further to meet
the need of complete glacier surface velocities for a better
knowledge of rheological parameters that control it. In future
work, an estimation of the spatio-temporal covariance with
adaptive window will be developed in order to avoid potential
edge effects at the glacier boundaries.
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Fig. 3: Reconstruction of the time series of velocity fields (meters/year) showed in Fig. 2.
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g0
Truth

Perturbed =
Truth + Noise + Gaps Reconstructed

Residual =
Perturbed - Reconstructed Noise

a)

b)

c)

d)

Fig. 1: Reconstruction of a first order displacement field [cm] described by the linear model g(r, t) = (1 + 0.5r)t with
t = 1, . . . , 10, r =

√
(x+ 0.1)2 + (y + 0.3)2 and (x, y) varying regularly in the compact interval [−1, 1]2 of size 50 × 50.

Reconstruction result is shown at t = 5 for extended EM-EOF (a)(c) and EM-EOF (b)(d) methods. The fields are perturbed
by random gaps and spatially correlated noise (a)(b), and correlated gaps and spatio-temporally correlated noise (c)(d). The
quantity of missing data is fixed to 30% in all cases, whereas the signal-to-noise ratio (SNR) equals 2 in (a)(b) and 1.8 in (c)(d).
Residual is the difference between the perturbed field and the reconstructed field. Results show smoother spatial interpolation
in the case of extended EM-EOF compared to EM-EOF. As seen in the residual field, both methods filter well the noise, but the
extended EM-EOF method corrects better spatial perturbations, which can be associated with artifacts in real data applications.
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Truth

Perturbed =
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Residual =
Perturbed - Reconstructed Noise
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Fig. 2: Reconstruction of a synthetic displacement field [cm] described by the model g(r, t) = sin(w1t) cos(w1r) +
0.5 cos(w2t) cos(w3r) + 0.1 sin(w4t) cos(w5r) + 0.3 sin(w6r) sin(w7t) + 0.1 sin(w8r) sin(w8t) with t = 1, . . . , 10,
r = exp (−(x+ y)2) + xy + tan(x) and (x, y) varying regularly in the compact interval [−1, 1]2 of size 50 ×
50. {w1, . . . , w8} = {2πf1, . . . , 2πf8} are the signal angular velocities with frequencies fixed to {f1, . . . , f8} =
{0.25, 0.75, 2.5, 1.25, 5, 7.5, 1.75, 0.5}. Reconstruction result is shown at t = 5 for extended EM-EOF (a)(c) and EM-EOF
(b)(d) methods. The fields are perturbed by random gaps and spatially correlated noise (a)(b), and correlated gaps and spatio-
temporally correlated noise (c)(d). The quantity of missing data is fixed to 50% in all cases, whereas the signal-to-noise ratio
(SNR) equals 1.8 in (a)(b) and 1.5 in (c)(d). Residual is the difference between the perturbed field and the reconstructed field.
The extended EM-EOF method shows better performance in the presence of important quantities of gaps. The use of spatial
correlation in addition to temporal correlation as well as the hankelization step (Eq. (7)(8) in the manuscript) significantly
improves spatial interpolation.
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Fig. 3: Root-mean-square error (RMSE) δ and cross-validation RMSE δCV versus the quantity of missing data (%) for the
extended EM-EOF and EM-EOF methods on three synthetic displacement models g0 (Fig. 1), g1 and g2 (Fig. 2). g1 is modelled
by the function g(r, t) = (1 + 0.5r)t + sin(w1t) cos(w1r) + 0.5 cos(w2t) cos(w3r) where t and r are the same as in g0 and
{w1, w2, w3} = {2π× 0.25, 2π× 0.75, 2π× 2.5}. RMSE is computed on observed values (non-missing) whereas cross-RMSE
is computed on randomly chosen point from the data (1% of the total). These points are discarded from the data and then
put aside. The cross-RMSE is then the error between these points and their reconstructed values. Solid line: random missing
data and spatially correlated noise; dashed line: correlated missing data and spatio-temporally noise. The SNR equals 2 in
all experiments (mean on 100 run). Results show that the extended EM-EOF method performs better (g0, g1) or equally (g2)
when the quantity of gaps is large compared to the EM-EOF method. When missing data is correlated, the extended EM-EOF
method is superior to the EM-EOF method, which illustrates the interest of using spatial correlation in addition to temporal
correlation.
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Fig. 4: Root-mean-square error (RMSE) δ and cross-validation RMSE δCV versus the SNR for the extended EM-EOF and
EM-EOF methods on three synthetic displacement models g0 (Fig. 1), g1 and g2 (Fig. 2). g1 is modelled by the function
g(r, t) = (1+ 0.5r)t+ sin(w1t) cos(w1r) + 0.5 cos(w2t) cos(w3r) where t and r are the same than in g0 and {w1, w2, w3} =
{2π × 0.25, 2π × 0.75, 2π × 2.5}. RMSE is computed on observed values (non missing) whereas cross-RMSE is computed
on randomly chosen point from the data (1% of the total). These points are discarded from the data and then put aside. The
cross-RMSE is then the error between these points and their reconstructed values. Solid line: spatio-temporally correlated noise
and correlated missing data; dashed line: spatially correlated noise and random missing data. The quantity of missing data is
fixed to 30% in all experiments (mean of 100 run). Results demonstrate that the extended EM-EOF method outperforms the
EM-EOF methods in a low SNR context, especally when the noise is spatially correlated.


