Gap-filling based on iterative EOF analysis of the temporal covariance: application to InSAR displacement time series

Alexandre Hippert-Ferrer¹, Yajing Yan¹, Philippe Bolon¹

Tuesday, July 30

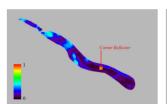
¹Laboratoire d'Informatique, Systèmes, Traitement de l'Information et la Connaissance (LISTIC), Annecy, France

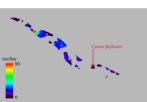
Content

- 1 Context and motivation
- 2 The EM-EOF method
- 3 Numerical simulations
- 4 Application to displacement time series over alpine glaciers
- 5 Conclusion and perspectives

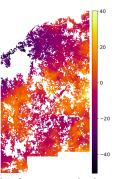
Introduction

- Missing data is a frequent issue in SAR-derived products in both space and time.
- It can prevent the full understanding of the physical phenomena under observation.
- Causes: rapid surface changes, missing image, technical limitations.





Argentiere glacier, offset tracking of TerraSAR-X in Summer 2010 [2]



Interferogram over land area, Mexico (Isterre)

Motivation of the study

Handling missing data in InSAR displacement time series

- Classical approach : spatial interpolation
- Not exploited (yet): temporal information
 - ightarrow Manage spatio-temporal missing data in time series \leftarrow

Proposed: a statistical gap-filling method addressing

- 1. Randomness and possible space time correlation of
 - Noise
 - Missing data
- 2. Mixed frequencies displacement patterns (complex signals)

4/21

Key components of the proposed method :

- Signal learned as empirical orthogonal functions (EOFs).
- Low rank structure of the sample temporal covariance matrix.
- Reconstruction with appropriate initialization of missing values 1.
- Expectation-Maximization (EM)-type algorithm for resolution.

^{1. [1]} Beckers and Rixen, "EOF calculations and data filling from incomplete oceanographics datasets." J. Atmos. Oceanic Technol., vol.20(12), pp.1836-1856, 2003

EM-EOF: data representation and initialization

■ Let *X*(**s**, *t*) be a spatio-temporal field containing the values of *X* at position **s** and time *t*:

$$X = (\mathbf{x}_{1}, \mathbf{x}_{2}, \dots \mathbf{x}_{n}) = \begin{pmatrix} x_{11} & x_{12} & x_{13} & \cdots & x_{1n} \\ x_{21} & x_{22} & x_{23} & \cdots & x_{2n} \\ x_{31} & x_{32} & x_{33} & \cdots & x_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{p1} & x_{p2} & x_{p3} & \cdots & x_{pn} \end{pmatrix}$$

 $(x_{ij})_{1 < i < p, 1 < j < n}$ is the value at position \mathbf{s}_i and time t_i and may be missing.

■ Missing values are then initialized by an appropriate value (first guess).

■ The sample temporal covariance is first estimated :

$$\hat{C} = \frac{1}{p-1} (X - \mathbf{1}_{\mathbf{n}} \bar{X})^T (X - \mathbf{1}_{\mathbf{n}} \bar{X})$$

EM-EOF: covariance estimation and decomposition

■ The sample temporal covariance is first estimated :

$$\hat{C} = \frac{1}{p-1} (X - \mathbf{1}_{\mathbf{n}} \bar{X})^T (X - \mathbf{1}_{\mathbf{n}} \bar{X})$$

■ EOFs $(\mathbf{u}_i)_{0 \le i \le n}$ are the solution of the eigenvalue problem :

$$\hat{C}U = U\Lambda$$

EM-EOF: covariance estimation and decomposition

■ The sample temporal covariance is first estimated :

$$\hat{C} = \frac{1}{p-1} (X - \mathbf{1}_{\mathbf{n}} \bar{X})^T (X - \mathbf{1}_{\mathbf{n}} \bar{X})$$

■ EOFs $(\mathbf{u}_i)_{0 < i < n}$ are the solution of the eigenvalue problem :

$$\hat{C}U = U\Lambda$$

■ EOFs can be used to express \hat{C} in terms of EOF modes :

$$\hat{C} = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^T + \dots + \lambda_n \mathbf{u}_n \mathbf{u}_n^T$$

EM-EOF: reconstruction of the field

X' is reconstructed with M number of EOFs :

$$X' = \sum_{i=1}^{n} a_i \mathbf{u}_i^t \to \hat{X}' = \sum_{i=1}^{M \ll n} a_i \mathbf{u}_i^t$$

with $a_i = X' \mathbf{u}_i$ are the Principal Components (PCs) of the anomaly field (X').

- The first EOF modes capture the main temporal dynamical behavior of the signal whereas other modes represent various perturbations².
- Goal : find the optimal M

 ^[3] R. Prébet, Y. Yan, M. Jauvin and E. Trouvé, "A data-adaptative EOF based method for displacement signal retrieval from InSAR displacement measurement time series for decorrelating targets", IEEE Trans. Geosci. Remote Sens., vol. 57(8), pp. 5829-5852, 2019

■ Cross-RMSE : cross-validation root-mean-square error :

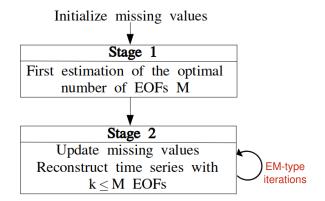
$$E(k) = \left[\frac{1}{N} \sum_{k=1}^{N} |\hat{\mathbf{x}}_k - \mathbf{x}|^2\right]^{1/2}$$

k: number of EOF modes used in the reconstruction

■ **Key parameter**: the optimal number of EOF modes *M*, estimated by:

$$\underset{M \in [1,n]}{\operatorname{arg\,min}} E(k)$$

A 2-stage method



Numerical simulations: setup

■ Displacement fields with different complexity are computed :

Orde	g(r,t)	
1	(1-0.5r)t	g ₁
$f_1r)$ 2	$g_1 + \sin(2\pi f_1 t) \cos(2\pi f_1 r)$	92
$(2\pi f_3 r)$ 3	$g_2 + 0.5\cos(2\pi f_2 t)\cos(2\pi f_3 t)$	g_3
$(2\pi f_5 r) \qquad 4$	$g_3 + 0.1\sin(2\pi f_4 t)\cos(2\pi f_5 t)$	g
f_1r) 2 f_2r) 3 f_3r) 4	$(1 - 0.5r)t$ $g_1 + \sin(2\pi f_1 t) \cos(2\pi f_1 r)$ $g_2 + 0.5 \cos(2\pi f_2 t) \cos(2\pi f_3 t)$ $g_3 + 0.1 \sin(2\pi f_4 t) \cos(2\pi f_5 t)$	-

TABLE – $f_1 = 0.25$, $f_2 = 0.75$, $f_3 = 2.5$, $f_4 = 1.25$, $f_5 = 5$.

Numerical simulations: setup

Displacement fields with different complexity are computed :

	g(r,t)	Order		
<i>g</i> ₁	(1 – 0.5 <i>r</i>) <i>t</i>	1		
<i>g</i> ₂	$g_1 + \sin(2\pi f_1 t) \cos(2\pi f_1 r)$ $g_2 + 0.5 \cos(2\pi f_2 t) \cos(2\pi f_3 r)$ $g_3 + 0.1 \sin(2\pi f_4 t) \cos(2\pi f_5 r)$	2		
<i>g</i> ₃	$g_2 + 0.5\cos(2\pi f_2 t)\cos(2\pi f_3 r)$	3		
g_4	$g_3 + 0.1 \sin(2\pi f_4 t) \cos(2\pi f_5 r)$	4		
Ti (0.05 (0.75 (0.5 (1.05 (5.5				

TABLE –
$$f_1 = 0.25$$
, $f_2 = 0.75$, $f_3 = 2.5$, $f_4 = 1.25$, $f_5 = 5$.

- Type of noise : random $\sim \mathcal{N}(0,1)$, spatially and spatio-temporally correlated
- Type of gaps : random, correlated

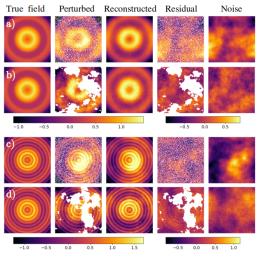
Numerical simulations: setup

Displacement fields with different complexity are computed :

	g(r,t)	Order
<i>g</i> ₁	(1 - 0.5r)t	1
g_2	$g_1 + \sin(2\pi f_1 t) \cos(2\pi f_1 r)$ $g_2 + 0.5 \cos(2\pi f_2 t) \cos(2\pi f_3 r)$	2
<i>g</i> ₃	$g_2 + 0.5\cos(2\pi f_2 t)\cos(2\pi f_3 r)$	3
<i>g</i> ₄	$g_3 + 0.1 \sin(2\pi f_4 t) \cos(2\pi f_5 r)$	4
_		

TABLE –
$$f_1 = 0.25$$
, $f_2 = 0.75$, $f_3 = 2.5$, $f_4 = 1.25$, $f_5 = 5$.

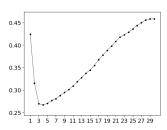
- Type of noise : random $\sim \mathcal{N}(0,1)$, spatially and spatio-temporally correlated
- Type of gaps : random, correlated
- \blacksquare SNR = [0.5,4.5]
- Gaps [0,80]%
- Initialization value: spatial mean, spatial mean + random noise, spatial mean + correlated noise



SNR and % of gaps are fixed:

- SNR = 1.5
- 30% of gaps

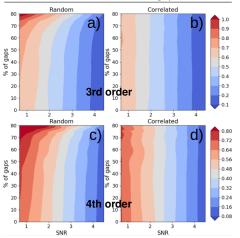
Number of EOF modes vs. cross-RMSE:



 \rightarrow Minimum of the error found at the signal order

Sensitivity to SNR and % of gaps

Cross-RMSE in function of % of gaps and SNR:



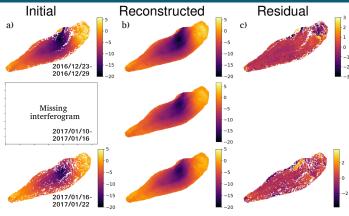
- The method is more sensitive to SNR than to the % of gaps
- Random gaps affect more the reconstruction than correlated (seasonal) gaps
- Initialization value affects the time of convergence but not the estimation of M

Data and area of study

Glacier	Period	Platform	Data type	Size	[min, max]% missing	Missing images
Gorner	11/2016-03/2017	Sentinel-1/A	Interferometry	16	[11.8, 27.8]%	4
Miage	12/2016-03/2017	Sentinel-1/A	Interferometry	13	[11.4, 23.1]%	3
Argentière	10/2016-12/2017	Sentinel-1/A/B	Offset tracking	65	[2, 50]%	0

TABLE - Time series description.

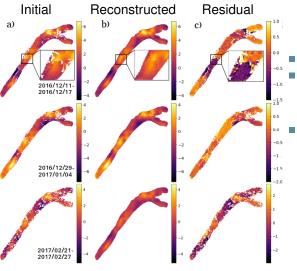
Case 1: Gorner Glacier



Number of EOF modes: 3

- A. Hippert-Ferrer, Y. Yan and P. Bolon, Em-EOF: gap-filling in incomplete SAR displacement time series, 2019, submitted.
- Consistent pattern in missing data areas
- Missing interferogram is reconstructed by adding the temporal mean to the anomaly.

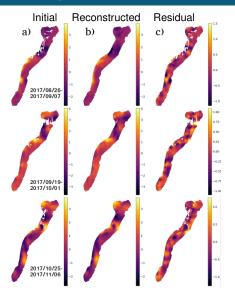
Case 2: Miage Glacier

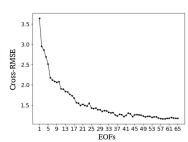


- Number of EOF modes: 2
- Discontinuities in the residuals due to phase jumps in the original interferogram.
- Detection and correction of inconsistencies.

Case 3 : Argentière Glacier

Context and motivation





- Very low SNR and strong correlated gaps in space and time
- Strong mixing between displacement signal and noise
- Global agreement between reconstructed and initial fields

Conclusion

- La méthode **EM-EOF** peut prendre en charge des cas complexes
 - Interférogrammes manquants
 - Discontinuités dues aux sauts de phase (perte de coherence)
- Apte à augmenter la taille effective d'un jeu de données
- Limitations de la méthode
 - Plus More sensitive to SNR than to % of gaps.
 - lacktriangle Argentière case : some breakdown points ightarrow potential for improvement

Perspectives

- Applications : slow slip event, glacier velocities from optical data...
- Estimation of a covariance matrix with missing data
- Time series of complex interferograms before unwrapping

Questions

Thank you for your attention.

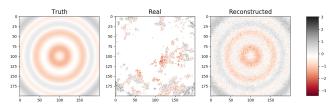
- [1] J. M. Beckers and M. Rixen. EOF calculations and data filling from incomplete oceanographics datasets. J. Atmos. Oceanic Technol., 20(12):1836–1856, 2003.
- [2] R. Fallourd, O. Harant, E. Trouvé, and P. Bolon. Monitoring temperate glacier displacement by multi-temporal TerraSAR-X images and continuous GPS measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 4(2): 372–386, 2011.
- [3] R. Prébet, Y. Yan, M. Jauvin, and E. Trouvé. A data-adaptative eof based method for displacement signal retrieval from insar displacement measurement time series for decorrelating targets. IEEE Trans. Geosci. Remote Sens., 57(8):5829–5852, 2019.

This work has been supported by the Programme National de Télédétection Spatiale (PNTS, http://www.insu.cnrs.fr/pnts), grant PNTS-2019-11, and by the SIRGA project.

Worst case scenarii

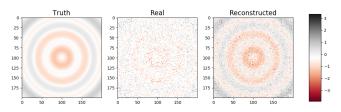
Correlated gaps:

1 EOF - 70% gaps - SNR=0.52 - 72 iterations



Random gaps:

1 EOF - 70% gaps - SNR=0.52 - 326 iterations



Computation of a correlated noise

From an autocorrelation function $c(r) = r^{-\beta}$ and a white noise image b:

- 1. Compute power spectral density of c: $\Gamma(c) = |\mathcal{F}\{c\}|$
- 2. Compute FT of $b : \mathcal{F}\{b\}$
- 3. Do some filtering : $\mathcal{F}\{b\}\Gamma(c)$
- 4. Compute $\mathcal{F}^{-1}\{\mathcal{F}\{b\}\Gamma(c)\}$