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ABSTRACT

An iterative method, namely extended EM-EOF (Expectation
Maximization - Empirical Orthogonal Functions) is proposed
to retrieve missing values in satellite derived displacement
time series. The method constructs the spatio-temporal co-
variance of a displacement time series, decomposes it into
different EOF modes by solving the eigenvalue problem and
then selects an optimal number of EOF modes to reconstruct
the time series based on cross validation errors. The latter are
also used as convergence criterion in an EM-like algorithm. A
confidence index associated with each eigenvalue, estimated
from the eigenvalue uncertainty, is introduced as a metric for
refining the estimated optimal number of EOF modes. Results
on simulated displacement time series perturbed by spatially
correlated noise demonstrate the potential of extended EM-
EOF to impute spatio-temporal missing values even in case
of a reduced size of time series.

Index Terms— Gap filling, EOFs, spatio-temporal co-
variance, satellite image, displacement, time series

1. INTRODUCTION

Time series analysis constitutes a living subject in satellite im-
age derived displacement measurement, especially since the
launching of Sentinel satellites that provide free and system-
atic satellite image acquisitions with reduced revisiting time
and extended spatial coverage. Large volumes of satellite im-
ages are available for monitoring of numerous targets at the
Earth’s surface, which allows for significant improvements
of the displacement measurement accuracy, benefiting from
advanced multi-temporal methods [1, 2]. Regardless of this
large volume of data, time series of displacement measure-
ment derived from satellite images can suffer from missing
data in both space and time dimensions, mainly due to techni-
cal limitations of the ground displacement computation meth-
ods (e.g. differential interferometry (InSAR), offset tracking)
and surface property changes of the targets under observation
[3]. Missing data can hinder or even bias the full understand-
ing of the phenomenon. An efficient missing data reconstruc-
tion method is thus of particular importance for all research
and applications that require data completeness.

On the other hand, missing data problem in satellite im-
age derived displacement measurement has not yet been paid
significant attention. Existing methods are still mainly fo-
cused on spatial or temporal interpolation only, which pre-
vents from using the full spatio-temporal information [4]. In
[5, 3], authors proposed a namely Expectation Maximization-
Empirical Orthogonal Functions (EM-EOF) method based on
EOF analysis of the temporal covariance of a displacement
time series for missing data reconstruction. Interesting re-
sults were obtained in Sentinel-1 InSAR displacement mea-
surement time series, which confirms the efficiency of the
EOF analysis for missing data reconstruction. However, the
EM-EOF method presents some limitations when 1) the time
series is small in size, for example, in alpine glacier displace-
ment measurement by InSAR (InSAR works only in winter
without snow cover), 2) the spatial correlation prevails over
the temporal correlation and 3) heterogeneous and local spa-
tial features are present in the displacement field.

Therefore, we introduce in this paper an extension to
the EM-EOF method, namely extended EM-EOF hereafter,
which also makes the use of spatial correlation by augment-
ing the data with space-lagged information. The optimal
number of EOF modes is then determined by the joint use
of cross-validation errors and eigenvalues uncertainties. Syn-
thetic simulations are then performed in order to highlight the
efficiency of the extended EM-EOF method for reconstruct-
ing a displacement time series with the presence of correlated
data gaps, significant spatially correlated noise and complex
displacement behaviors.

2. METHODOLOGY

Starting from an appropriate initialization of missing values,
the extended EM-EOF method is based on an EM-like algo-
rithm. At E step, missing data are updated and the spatio-
temporal covariance is estimated and decomposed into EOF
modes. At M step, the data are reconstructed with an opti-
mal number of EOF modes that minimizes the difference be-
tween the initial and reconstructed data. The reconstructions
are then used as initial values of missing data points for the
next iteration. The final reconstruction is obtained after the
convergence of the iterative process.



2.1. Data organization and covariance estimation

Let X be a time series (i.e. spatio-temporal data matrix)
containing N temporal observations over P spatial samples,
which in matrix form can be represented as follows:

X = (x1,x2, . . . ,xN ) (1)

where each xt is a spatial map (e.g. ensemble of pixels of an
image) of size W × H = P at times t = 1, . . . , N . Note
that in practice, X is detrended, i.e. its spatial mean is re-
moved. From X, a ”space-lagged” matrix D can be formed
by applying a sliding window of M ≤ P spatial samples
to each temporal observation xt (Fig. 1). D is called the
augmented data matrix (as in [6]) of size K × MN with
K = (W −

√
M + 1)(H −

√
M + 1):

D = (d1,d2, . . . ,dK)T (2)

where di is an MN -length vector.

Fig. 1: Illustration of the augmentation of data matrix X with M =
9 and K = 16. A M -samples spatial squared window (in red) is
applied to each xt and slides through K possible positions. Each
view of the M -samples window is then vectorized and put into a
K ×M × N intermediary matrix. Finally, dimension M × N is
vectorized to get matrix D.

The spatio-temporal covariance C of the augmented data
matrix D can be then estimated as:

Ĉ =
1

K − 1
DTD (3)

2.2. Spatio-temporal covariance decomposition

The eigenvalue decomposition of matrix Ĉ yields to:

Ĉ
EVD

=

MN∑
i=1

λiuiu
T
i (4)

where ui is an eigenvector of Ĉ corresponding to the eigen-
value λi. Each term λiuiu

T
i corresponds to an EOF mode

which describes the spatio-temporal variability of the aug-
mented data matrix D.

2.3. Reconstruction of the data matrix

From equation (4), the augmented matrix D can be recon-
structed in the following way:

D̂ =

MN∑
i=1

Duiu
T
i (5)

where Dui = ai are the principal components (PCs) of
D. Each xi can then be retrieved from D̂ by reversing the
formatting described above (Section 2.1, Fig. 1). Since the
first EOF modes explain most the variance of the data matrix
and higher order EOF modes often correspond to noise, the
truncation of (5) by a number R � MN of PCs and EOFs
allows mainly to preserve the displacement signal.

2.4. Selection of the optimal number of EOF modes

To determine the optimal R which best reconstructs the dis-
placement signal, the first metric used is the cross-validation
root-mean-square error (cross-RMSE) defined as the `2-norm
of the difference between the cross-validation data and the re-
construction [5]. The optimal number of EOFs modes is then
found as the one that minimizes the cross-RMSE. However,
with this metric, strong mixing between the correlated noise
and the displacement signal can lead to an over-estimation of
R, which can be explained by the fact that cross-validation
data are also subject to noise [3, 7]. To overcome this issue,
we propose to make use of the degeneracy (close eigenvalues)
and/or the separation (distant eigenvalues) in the eigenvalues
spectrum, which provides useful information on the frequen-
cies distributions and the spatio-temporal variability of the
signal. Two or multiple consecutive eigenvalues (called mul-
tiplet) are degenerate when the uncertainty of an eigenvalue
λk is comparable with or larger than the spacing between λk
and its closest neighbor. Therefore, to investigate multiplet
degeneracy, eigenvalues uncertainties must be first estimated.
[8] proposed a ”rule of thumb” to approximate the eigenval-
ues uncertainties:

∆λk ≈
√

2

M∗N∗λk
∆uk ≈

∆λk
λj − λk

uj (6)

where λj is the closest eigenvalue from λk, uj and uk
are the corresponding eigenvectors, M∗N∗ is the number of
independent observations in the spatio-temporal sample, also
called effective sample size. The interpretation of equation (6)
is the following: if the uncertainty of eigenvalue λk is close
to the difference between λk and λj , then the corresponding
eigenvectors, uj and uk, are likely to be contaminated each
other. According to [9], the estimation of N∗ is given by:

N∗ = N
[
1 + 2

N−1∑
k=1

(1− k

N
)ρ(k)

]−1
(7)

where ρ(k) is the temporal auto-correlation of the time series
and N is the number of observations in time. This defini-
tion holds for a univariate time series of N observations, e.g.
a pixel value varying over time. Following this definition,



we estimate the effective sample size M∗ within each spatial
window of size M used to augment the data matrix X:

M∗ = M

(
1 +

2

N

M∑
k=1

(1− k

M
)

N∑
t=1

It

)−1

(8)

where Is is the Moran’s I statistics [10] for estimating spatial
auto-correlation of the spatial map at time t.

Based on the estimated eigenvalues uncertainties given in
equation (6), a second metric consisting of a confidence mea-
sure, Ck, associated with each eigenvalue λk can be computed
in the [0, 1] interval:

Ck =
max(Γk)− Γk

max(Γk)−min(Γk)
(9)

with Γk = log
(

∆λk

λj−λk

)
, k = 1, . . . , nM . Ck allows de-

tecting the degeneracy or the separation of the eigenvalues
in the spectrum, which respectively corresponds to lower and
higher values of Ck. That is, any peak in Ck will coincide
with a separation between two eigenvalue multiplets, whereas
lower ”sidepeak” values correspond to the degeneracy of a
multiplet. To refine the optimal number of EOF modes R pri-
marily determined using the cross-RMSE, Ck is computed for
k = 1, . . . ,MN . Then, the peaks in Ck corresponding to the
separations in the eigenvalue spectrum are detected. If one
peak has an index k corresponding to R, the algorithm stops
here. Otherwise, if the index is different from R and if Ck is
high enough (e.g. Ck ≥ 0.6), the optimal number is updated
so that it matches the index k.

2.5. Determination of the lag M

In general, the choice of M is dictated by a trade-off between
the amount of information extracted in the window (M should
be large) and the number of repetitions of the window within
each image (M should be small) [11]. Instead of a single
value, a range of M can provide satisfactory results. In this
paper, two metrics are proposed to determine the range of M .
The first metric is based on the covariance estimation theory,
that is, the number of independent samples should be at least
twice the number of variables. Thus, the maximum value of
M can be determined by solving K > 2M , which leads ap-
proximately to M < P/6. The second metric is based on
the spatial auto-correlation property of the displacement field.
Let τ the spatial decorrelation decay defined as:

τ = − ∆P

log r
(10)

where r is the lag-one auto-correlation and ∆P is the spatial
sampling rate, here 1 pixel. Following [6], M can be approx-
imated by M ' P/τ . In most cases, r is supposed to be
smaller than 0.95, thus M > P/20.
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Fig. 2: a) Eigenvalues λk (first 150 shown) of matrix D, b) asso-
ciated confidence index Ck and c) plot of Ck vs. λk showing the
eigenvalues corresponding to the number of selected EOF modes
(red dots), which corresponds to a peak in Ck (red vertical line).

3. SYNTHETIC SIMULATIONS

A time series of 10 displacement fields of size 50 × 50 is
generated (relatively small spatial dimension mainly due to
computational time). The displacement signal represents os-
cillations with different frequencies following the model:

g(r, t) = sin(w1t) cos(w1r) + 0.5 cos(w2t) cos(w3r)

+ 0.1 sin(w4t) cos(w5r) + 0.3 sin(w6r) sin(w7t)

+ 0.1 sin(w8r) sin(w8t)

for t = 1, . . . , 10 and rx,y = exp(−(x + y)2) + tan(x)
with (x, y) varying regularly in the [−1, 1]2 grid. Finally,
wi = 2πfi with fi = {0.25, 0.75, 2.5, 1.25, 5, 7.5, 1.75, 0.5}.

The displacement signal is then perturbed by spatially cor-
related noise and spatio-temporally correlated gaps. These
features are consistent with observations in real displacement
time series obtained from SAR images. Noise and gaps are
generated as in [3]. Besides the complexity of the displace-
ment behavior, a relatively low signal-to-noise ratio (SNR),
1.3, and a large gap quantity, 50%, are chosen to confront the
extended EM-EOF to a challenging case. The lag was fixed to
M = 121, which corresponds to the theoretical lower bound
of M given P = 2500. In this experiment, the estimated op-
timal number of EOF modes, R, is 67. Figure 2 shows that
R corresponds to a peak in Ck, which keeps most of the sig-
nificant multiplets in the reconstruction, thus preserving the
structure of the corresponding EOFs. Note that the level of
confidence can be adjusted such that only the peaks situated
above a given value are considered.

Figure 3 shows an example of the reconstructed field by
extended EM-EOF and the comparison with EM-EOF. A
global agreement of displacement pattern between the recon-
structed and true fields is observed, given the low SNR, large
data gaps, small time series size and complex displacement
behaviors. Compared to EM-EOF, the reconstructed field



Fig. 3: a) True displacement field g(r, t) at t = 10 b) noisy and
gappy (50%) displacement field c) spatially correlated noise, d) and
e) reconstructed displacement fields with EM-EOF and extended
EM-EOF respectively f) and g) residuals (difference between a) and
d) or e)).

with extended EM-EOF shows a better result: pattern edges
are better preserved and residuals are similar to noise, which
is mainly due to the inclusion of space-lagged information,
allowing 1) taking advantage of the spatial correlation in addi-
tion to the temporal correlation 2) processing spatial samples
by small windows with more homogeneous samples.

4. CONCLUSIONS

In this paper, a data adaptive method based on EOF analysis,
called extended EM-EOF, is proposed to reconstruct missing
data in displacement time series obtained from satellite im-
ages. This method explores the spatio-temporal covariance
matrix of a time series and proposes robust metrics for the
determination of the optimal number of EOF modes for re-
construction. Synthetic simulations with large data gaps and
low SNR suggest that this method is particularly efficient in
case of heterogeneous local features and small time series
size where it can provide a better representation of displace-
ment patterns than the EM-EOF method. In addition, the pro-
posed confidence index associated with eigenvalue uncertain-
ties is of particular interest to enhance the selection of the
optimal number of EOFs modes and to prevent from over-

fitting [4, 5, 7] in case of multiplet degeneracy. The extended
EM-EOF method will be applied to offset tracking displace-
ment time series over the Fox glacier in Southern Alps of New
Zealand.
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