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Abstract—An iterative method, namely Expectation
Maximization-Empirical Orthogonal Functions (EM-EOF)
is proposed for the first time to retrieve missing values in SAR
displacement time series. This method decomposes the temporal
covariance of a displacement measurement time series into
different EOF modes by solving the eigenvalue problem, and
then selects the optimal number of EOF modes to reconstruct
the time series. After an appropriate initialization of missing
values, the EM-EOF method performs (i) a cross-validation
root-mean-square error (cross-RMSE) minimization to find an
estimate of the optimal number of EOF modes used in the
reconstruction and (ii) an iterative update of missing values
which gives the best estimate of missing data points according
to the cross-RMSE. Synthetic simulations have been first
performed in order to highlight the efficiency of EM-EOF in the
case of various displacement signal complexities and different
types of noise and gaps, and a thorough error analysis has
been conducted to determine the sensitivity of the method to
signal-to-noise ratio (SNR), quantity of gaps and type of noise
and gaps. Then, EM-EOF is applied to three displacement
measurement time series computed from Sentinel-1 A/B SAR
images: two interferograms time series over Gorner and Miage
glaciers and one offset time series over the Argentière Glacier
covering a period extending from September 2016 to December
2017. Both synthetic simulations and real data applications
demonstrate the ability of EM-EOF to retrieve missing values,
even in the cases of frequent data gaps, limited size of the time
series and spatio-temporally correlated noise and gaps.

Index Terms—gap-filling, EOF, SAR, time series, displacement
measurement

I. INTRODUCTION

T IME series analysis of remotely sensed images is an
essential tool to better understand some physical phenom-

ena observed on Earth, especially since the recent development
of online platforms allowing an easier access to satellite-
derived products. From the existing well-developed tech-
niques, differential interferometry (D-InSAR) and offset track-
ing have experienced continuous improvements over time to
compute ground displacement maps from Synthetic Aperture
Radar (SAR) images [1]. Regardless of their capability to pro-
duce precise ground displacement estimations with enhanced
spatial coverage, time series of displacement measurement
derived from SAR images can suffer from missing data in both
space and time dimensions. Data gaps can occur for various
reasons including raw data quality and/or technical limitations
of the methods used to compute ground displacements.

Of course, the missing data problem is not new and has been
well-documented [2]–[4], especially in optical and infrared

satellite images where data quality is strongly dependent on
cloud coverage [5]–[8]. An important framework of gap-filling
methods has already been established in ocean-atmosphere,
vegetation and hydrology domains [9]–[14]. However, in
SAR displacement measurement, existing methods to handle
missing data, e.g. regression analysis, nearest-neighbor in-
terpolation (NNI), inverse/angular distance weighting (IDW),
spline interpolation and kriging [15]–[18], classically use
spatial interpolation of missing values from existing values.
Most of these methods include limited temporal information,
which can be an issue when dealing with time-evolving
physical processes [19]. Moreover, no particular attention has
been paid to missing data issues in SAR-derived products
such as interferogram and offset time series. On the other
hand, complete displacement information can be of partic-
ular importance to fully understand the phenomenon under
observation, especially for decorrelating targets (e.g. glaciers,
vegetated volcanoes, etc.) where data gaps often exist. The
main motivation of this paper is to propose a gap-filling
method handling both spatial and temporal information of
SAR-derived displacement measurement time series.

When filling in gaps in displacement maps computed from
SAR images, one has to consider the specificity of the data
such as complex displacement behaviors (e.g. linear, oscilla-
tory, etc.), noise correlated at different scales in space and/or
time, (e.g. atmospheric perturbations, phase unwrapping er-
rors, etc). Thus, an efficient method aiming at filling in gaps
in SAR-derived displacement time series should be able to
handle noise and displacement signal complexity. From the
existing methods in time series analysis (see [20] and [21] for
a review), Empirical Orthogonal Functions (EOFs) have been
used to extract spatio-temporal features [9], [22], thanks to
their ease of implementation, high efficiency and needless a
priori information. EOF analysis is based on the eigenvalue
decomposition of the covariance of a time series into orthog-
onal functions, and allows a representation of the signal into
different variability modes such as trends, oscillatory patterns
and noise [23], [24]. In InSAR displacement measurement,
EOF analysis has recently been used for the first time to extract
displacement signal from a time series of Sentinel-1 A/B in-
terferograms over the Gorner glacier [25]. Encouraging results
confirm the efficiency of EOF-based methods in the retrieval
of spatio-temporal displacement characteristics of time series.
Therefore, it seems promising to use the displacement features
obtained from EOF analysis to fill in data gaps in InSAR
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and offset displacement time series. However, applying EOF
analysis directly to time series containing missing values can
lead to biases in the sample covariance estimation and thus in
the data matrix reconstruction. In order to get around of this
issue, the EOF analysis can be combined with the Expectation
Maximization (EM) algorithm [26]. The basic idea of the EM
algorithm consists of an iterative scheme, with each iteration
including 2 steps: the expectation (E) step finds the conditional
expectation of missing values given the observed data and
current estimated parameters and the maximization (M) step
performs maximum likelihood estimation of parameters as if
there were no missing data. The EOF analysis can thus be
embedded in an EM algorithm with an appropriate initializa-
tion of missing values. Given the hypothesis that initialization
values are not away from the expected values, an iterative
process allows the convergence towards the true values.

Based on this idea, a combination of the EM algorithm and
EOF analysis, called EM-EOF, is proposed in this paper. EM-
EOF is a data adaptive iterative method to fill in the gaps
in SAR displacement time series, and it takes into account
the data complexity in terms of both displacement signal and
noise behaviors. At E step, the missing values are filled in
by expected values. At M step, the temporal covariance of
the time series is estimated from the data with data gaps
filled in. Then, it is decomposed into EOF modes and a data
reconstruction is performed by selecting an optimal number
of EOF modes based on a pre-defined criterion. The EM-
EOF method proceeds in 2 stages: 1) the first stage consists in
finding a first estimation of the optimal number of EOF modes,
starting from a relevant initialization of missing values and 2)
the second stage is an iterative update of missing values based
on the initialization and the optimal number of EOF modes
found during the first stage. The final reconstruction is the
one that minimizes the distance between the reconstruction
and the data used for validation. As ground truth is often
not available in displacement measurement by remote sensing,
a cross validation technique [27] is proposed to validate the
EM-EOF method with available data only. The originality of
the present paper lies on the consideration of data gaps in
SAR-derived displacement measurement time series and the
introduction of the EM-EOF method which takes both spatial
and temporal information into account.

This paper is organized as follows : section II describes the
EM-EOF method; then, synthetic simulations are presented in
section III to demonstrate the ability of EM-EOF to retrieve
missing values in time series of various complexity and to
analyze the impact of some key parameters such as the initial-
ization value, the quantity of gaps, the type of noise and gaps
on the performance of EM-EOF; in section IV, EM-EOF is
applied to three displacement measurement time series issued
from InSAR and offset tracking of Sentinel-1 A/B images
acquired between September 2016 and December 2017 over
Gorner, Miage and Argentière glaciers. Finally, conclusions
and perspectives are given in section V.

II. THE EM-EOF METHOD

The principle of EM-EOF is summarized in two stages
(Fig. 1). The first stage consists in estimating the optimal

First estimation of the optimal 
number of EOFs M

Initialize missing values

Update missing values
Reconstruct time series with 

 k  M EOFs 

Stage 1

Stage 2

Fig. 1: Diagram of the 2-stages procedure of the EM-EOF
method. Data gaps are first initialized with an appropriate
value. At stage 1, the optimal number of EOF modes, M,
is estimated by minimising an error function. Stage 2 is a
refinement stage where updates of missing value are used to
reconstruct the time series in an iterative scheme.

number of EOF modes given an appropriate initialization
of missing values. For this, the temporal covariance of the
time series is decomposed into EOF modes. The appropriate
number of EOF modes (denoted by M in the following) to
reconstruct the time series is estimated by minimizing the
error between validation data and the reconstructed field. The
second stage updates the missing values iteratively, based on
both previous initialization and optimal number of EOF modes
until the algorithm reaches convergence. Details of the EM-
EOF method are given in the following.

A. Data organization

Let us suppose that we have a time series represented by a
spatio-temporal field X(s, t) which contains the values of the
field X at point s and at time t. The values of the field are
noted (xst)1≤s≤p,1≤t≤n and may be missing. In matrix form,
the field can be written as:

X =
(
x1,x2, . . . ,xn

)
=


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xp1 xp2 · · · xpn

 (1)

where each column xt =
(
x1t, x2t, . . . xpt

)T
is an observa-

tion over p points at a given time t, and each row is a time
series at a given grid point s. An observation xt can be an
incomplete displacement field, initially represented by a 2-D
matrix and reshaped as a column vector of length p. For the
computation of the sample temporal covariance (see section
II-B), the spatial mean of the field at each time (i.e. mean of
each column) is subtracted to form the spatial anomaly X ′:

X ′ = X − 1pX̄ (2)

where 1p =
(
1, . . . 1

)T
is a unit vector of length p and X̄ =(

x̄1, x̄2, . . . x̄n
)

is the line vector containing all observation
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means with each x̄t being the spatial mean of observation xt
computed as:

x̄t =
1

p

p∑
s=1

xst (3)

B. Theoretical background

The sample temporal covariance matrix of X is given by:

Ĉ =
1

p− 1
X ′TX ′ (4)

Note that p can either be equal to the number of all spatial
samples or be a subset of samples representing a target or
a particular object in the spatial field. In the latter, the data
matrix X represents only the target under consideration. The
eigenvectors, which are the EOFs of matrix Ĉ, can simply be
found by resolving the eigenvalue equation:

ĈU = UΛ (5)

where U is a n × n orthogonal matrix and Λ =
diag(λ1, . . . λn) contains the eigenvalues λi of matrix Ĉ in
decreasing order on its diagonal1. Each column ui of U is an
eigenvector of Ĉ and corresponds to each eigenvalue λi. U
has the property that UTU = UUT = I , which indicates that
each eigenvector is orthogonal to each other.

Since Ĉ is a symmetric matrix, it follows from the spectral
representation theorem that the eigenvalues and the eigenvec-
tors decompose Ĉ as:

Ĉ = λ1u1u
T
1 + λ2u2u

T
2 + · · ·+ λnunu

T
n (6)

This decomposition allows a representation of the covari-
ance in terms of EOF modes which describes the temporal
variability of the spatial anomaly of the field [24], with each
eigenvalue indicating the fraction of total variance explained
by the corresponding EOF mode. In general, the first EOF
modes represent most of the variability of the signal, which
means that most of the behavior of the field X can be
explained by just a few leading EOF modes.
X ′ can be reconstructed by summing the principal compo-

nents (PCs) ai multiplied by the eigenvectors:

X̂ ′ =

n∑
i=1

aiu
T
i (7)

where the ith PC ai = X ′ui is the projection of X ′ on the
ith eigenvector, i.e. a spatial pattern map associated with each
eigenvector ui. In other words, the PCs refer to the spatial
modes of variability of the time series while the eigenvectors
show how these spatial modes oscillate with time.

By truncating the summation of (7) at some M � n, one
will keep the EOF modes corresponding to the first (largest)
eigenvalues. By doing so, one can extract the main features
of the signal because the first EOF modes capture the main
temporal dynamical behaviours of the signal whereas other

1Note that since U−1 = UT , equation (5) is equivalent to performing a
Singular Value Decomposition (SVD) on matrix Ĉ and can be noted Ĉ =
UΛUT .

EOF modes represent various perturbations [25]. To decide
the number of EOF modes to retain in a given decomposition,
it is common to use the measure of the variance contained
in the first M EOF modes compared to the total variance
of the system given by fi =

∑M
i=1 λi/

∑n
i=1 λi [9], [24]. A

typical choice is to retain those modes that, when summed up,
explain 95% of the signal. In case of known data uncertainty,
the number of modes to retain can be determined such that the
misfits between the reconstruction and the noisy data are, on
average, of the order of magnitude of the data uncertainty
[28]. [29] also proposed to include data uncertainties into
the EOF analysis by computing an error-covariance matrix.
To overcome the issue of contamination between neighboring
EOF modes/eigenvalues in the case of noisy data, [30] have
estimated the eigenvalue uncertainty by a rule of thumb. This
can provide useful information when analyzing the eigenval-
ues, e.g. looking for a discontinuity of the eigenvalues in the
spectrum [31]. Moreover, when the statistical characteristics of
the noise present in the data are known, a subjective criterion
based on Monte Carlo methods can be applied [31], [32],
but this implies a priori information on noise characteristics
and it is time-consuming. In [25] the difference of squared
root-mean-square deviation (RMSD) with respect to noisy
data between consecutive number of EOF modes is used to
determine the appropriate number of modes to retain, showing
that this criterion is consistent with the minimum RMSD with
respect to the ground truth.

Despite the existing methods and criteria available in the
literature, finding an optimal number of EOF modes remains a
challenge, mainly because correlated perturbations are difficult
to separate from the displacement signal.

To get the reconstructed field X̂ , we finally add the spatial
mean back to the anomaly:

X̂ = X̂ ′ + 1pX̄ (8)

In the case where a spatial field is composed of multiple
objects each with a different temporal behavior, the recon-
struction of the spatial field can be performed object by
object. The sample temporal covariance should be estimated
using only spatial samples related to each object and the
reconstruction of the spatial field is obtained from the mosaic
of the reconstructions of each object.

C. Initialization of missing values

Initialization of the missing values constitutes a key param-
eter of the EM-EOF method because it impacts the estimation
of the temporal covariance matrix Ĉ and thus the computation
of the EOFs. In fact, the covariance matrix can be estimated
using only available values [33], [34], but this does not always
lead to a positive semi-definite covariance matrix [9]. As the
initialization value is considered as a first estimate of the miss-
ing values, it is clear that it should be set in accordance to the
distribution of the observed values. This assumption indicates
that such an initialization should perturb as little as possible
the variance distribution of different modes composing the
displacement field. To avoid any bias in the anomaly matrix,
data gaps can be initialized by the spatial mean (corresponding
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to zero in the anomaly) [11], [35]. However, [9] have shown
that an initial filling of missing values by the spatial mean
tends to diminish the variance of higher order modes by
inversely increasing the variance of the dominant modes. Such
an initial value tends to erase small scale information because
it smooths the displacement field around missing data points.
As no thorough study has been performed to compare different
initialization values and to investigate their impact on the
efficiency of the EOF analysis, a discussion focused on the
impact of the initialization value on the performance of the
EM-EOF method is given in section III-E. In the following,
we denote by �x = (x0st, x

1
st, . . . , x

m
st) ⊆ X the set of missing

data points of matrix X embedded in a m-length vector �x.

D. Cross-validation

In order to assess the reconstruction error and to select the
optimal number of EOF modes, a cross-validation root-mean-
square error (cross-RMSE) is proposed [27]:

E(k) =

[
1

N

N∑
i=1

|X̂k −X|2
]1/2

(9)

where X = {xi}1≤i≤N is the cross validation data subset of
X which contains N points randomly chosen in space and time
among existing data. These points are set as artificial missing
data with their values set aside. After each reconstruction with
k EOF modes, the cross validation data set X is compared to
the new estimated set X̂k. The number of points N must be
neither too small nor too large: a small N will not provide
a good statistical representation of the data whereas a large
N can affect the reconstruction error since the quantity of
missing data is increased. Cross-RMSE is particularly useful
when no ground truth or other source of information is
available for validation of the results, which is often the case
in displacement measurement.

E. Stage 1: find a first estimation of the optimal number of
EOF modes

Stage 1 is described by the pseudo-code in Algorithm 1.
After the initialization of missing values, we perform the
computation of (4) and (5) and reconstruct the time series
anomaly as in (7) by successively adding one EOF mode at
a time. The reconstruction of the time series with k EOF
modes is noted X̂k, which gives new estimated values ˆ

�x of
the missing data points �x, with the observed values remaining
unchanged. Every time an EOF mode is added, we compute
E(k). The optimal number M is then found as the number
which minimizes the cross-RMSE:

M = arg min
M∈[1,n]

E(k) (10)

where k = 1, . . . n and n is the maximum number of EOF
modes (i.e. the time dimension here).

Algorithm 1 Stage 1: find first estimation

Input: X , init_value
Output: M

1: �x← init_value
2: for k ← 1, n do
3: Compute (4), (5) to find Ĉ, U
4: Compute (7) with k EOF modes to obtain ˆ

�x ⊆ X̂k

5: Compute E(k)
6: end for
7: return arg min

M∈[1,n]
E(k)

F. Stage 2: update missing values
Stage 2 is described by the pseudo-code in Algorithm 2. It

is a refinement stage: for each number of EOF mode k, (4),
(5) and (7) are computed in an iterative loop. At iteration i,
the reconstruction is performed using the new values of the
missing data obtained at the last iteration. The cross-RMSE
is computed at each iteration. The convergence is obtained
only if the difference ∆E = Ei(k) − Ei−1(k), where Ei(k)
denotes the cross-RMSE at iteration i with k EOF modes, is
smaller than a predefined convergence value α. A small value,
generally close to 0, is appropriate for α. Once the convergence
is met, one more EOF mode is added to the reconstruction and
the iteration process starts again with k+1 EOF modes. If the
cross-RMSE starts to increase, the procedure stops, otherwise
it keeps going until the number of EOF modes M is reached.
Note that the optimal number M of EOF modes estimated at
stage 1 might not be reached during stage 2, which essentially
depends on SNR and the quantity of missing data. During
iterations, the update of missing data points tends to smooth
the displacement field (hence the term refinement used here).
In other words, a refined reconstruction with k EOF modes
might give a better estimation at the missing points than a
reconstruction with k + 1 EOF modes with no refinement.

In the case of a displacement signal perturbed by strong
correlated noise, the optimal number of EOF modes can be
over-estimated. To deal with this issue, we look at the quantity
1−E(k+1)/E(k), which gives a measure of the variation of
the cross-RMSE when adding one more EOF mode. A small
variation (for example less than a value β) implies that only
little information is added to the new reconstructed field: in
this case, the added EOF mode is not taken into account
in the reconstruction. If the data uncertainty is known, β
can be determined such that the reconstruction uncertainty
is consistent with the data uncertainty. If the uncertainty is
unknown, β is determined empirically. In most cases, a value
of 0.1 (which means that if the variation of the cross-RMSE
when adding one EOF mode falls below 10% of E(k), the
algorithm is stopped) is sufficient to select an optimal number
of EOF modes. At the end of stage 2, the time series is
reconstructed with the estimated number of EOF modes using
(7).

III. SYNTHETIC SIMULATIONS

The goal of this study is (i) to demonstrate the ability of
the EM-EOF method to retrieve missing values in various
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Algorithm 2 Stage 2: update missing values

Input: X , M , α, β
Output: X̂k

1: for k ← 1,M do
2: while |∆E| < α do
3: Compute (4), (5), (7) to find Ĉ, U , ˆ

�x ⊆ X̂k

4: �x← ˆ
�x

5: Compute E(k)
6: end while
7: if E(k) > E(k− 1) or 1−E(k)/E(k− 1) < β then
8: return X̂k−1
9: end if

10: end for
11: return X̂k

displacement time series of different complexities and (ii) to
highlight the impact of key parameters such as the type of
noise, the type of gaps, the initialization value of missing data
on the quality of the reconstruction.

A. Type of displacement

To simulate the displacement time series, displacement
models with different complexity are generated (Table I),
starting from a first order field g1 formed using a linear
function to n-order (2, 3, 4, ≥ 4) fields g2, g3, g4 and
g6 formed with sums of sines and cosines to reproduce an
oscillatory displacement with multiple frequencies. A fifth
synthetic field g5 representing an exponential decaying post-
seismic displacement is also generated using the Pyrocko
toolbox [36].

g(r, t) Order

g1 (1 − 0.5r1)t 1

g2 g1 + sin(2πf1t) cos(2πf1r1) 2

g3 g2 + 0.5 cos(2πf2t) cos(2πf3r1) 3

g4 g3 + 0.1 sin(2πf4t) cos(2πf5r1) 4

g5 A− b exp(−t/τe) + 10−4t -

g6 g1(r1) + g3(r2) + g3(r3) + g4(r1) ≥ 4

TABLE I: Deterministic fields used in synthetic simulations.
g1 is linear in space and time dimension whereas g2, g3 and
g4 include oscillations of different frequencies with a linear
basis. g5 is a post-seismic deformation with decaying time
τe = 1.5, and constants A = 0 and b = 1. r1 =

√
x2 + y2,

r2 =
√

(x− 1)2 + (y − 1)2 and r3 = exp (−(x+ y)2) +
xy + tan(x) are the distances from the origin with coordi-
nates (x, y) varying in the compact interval [−1, 1]2 and t
is the time of observation. Values of the frequencies are :
f1 = 0.25, f2 = 0.75, f3 = 2.5, f4 = 1.25, f5 = 5.

B. Type of noise

SAR-derived displacement measurements are subject to
perturbations of diverse origins. To be representative of the
different natures of perturbations, we simulate: 1) a spatially

correlated noise, 2) a spatio-temporally correlated noise and
3) a noise-like phase unwrapping error. Spatial and temporal
noise correlations are driven by two correlation coefficient
γ, ρ ≥ 0, whereas unwrapping errors are simulated by artificial
jumps of the displacement values (phase jumps). Details of
the generation of the first two types of noise are presented in
Appendix A.

C. Type of gaps

Due to various origins, data gaps can be randomly dis-
tributed in space and/or in time, or their distributions can be
spatially and/or temporally correlated. For example, spatially
correlated data gaps are often observed in offset measurements
over glaciers due to snow falls or rapid glacier flow or in
InSAR measurements over vegetation areas due to seasonal
coherence loss. Here, we consider two types of data gaps: 1)
gaps randomly distributed in space and time and 2) gaps which
have an evolving shape in space and time. In the latter case,
gaps are only generated on eight consecutive displacement
maps to simulate data gaps related to a seasonal event (winter
snow falls, vegetation in summer, etc.).

D. Experiments setup

6 time series of 40 displacement maps are generated, 5
of which include only one type of displacement field (one
target) each corresponding to g1, . . . , g5. The 6th time series g6
corresponds to a simulation of multiple targets with different
spatio-temporal behaviors. The spatial dimension for g1 to g4
is 200× 200 and 4000× 4000 for g5 and g6 All displacement
time series are perturbed by both random and correlated gaps,
as well as spatially and spatio-temporally correlated noise. The
amount of gaps varies from 0 to 80% and the signal-to-noise
ratio (SNR) varies between 0.5 and 4.5 to test the impact of
both parameters. To compare the effect of initialization on
the final reconstruction, initial filling is performed with three
values: 1) the spatial mean of the data, 2) the spatial mean
plus spatially correlated noise which has the same correlation
coefficient γ (γ = 1.1) and the same distribution as the noise
present in the data and 3) the spatial mean plus random
noise following a Gaussian distribution. Main experiments
setups (with results presented in the following section) are
summarized in Table II.

E. Results and discussions

a) Comparison of different initialization values: repeated
experiments with initial values taken from spatial mean plus
a random noise following a Gaussian distribution and spatial
mean plus a spatially correlated noise have been performed.
They show no difference in both the final cross-RMSE and the
optimal number of EOF modes compared to the initialization
with the spatial mean. However, it is observed that the time
of convergence of the iterative update at stage 2 can be
considerably increased with an initial filling with the spatial
mean plus random or correlated noise. We therefore choose
to initialize missing data points by the spatial mean in all the
experiments since 1) it avoids any bias in the reconstruction
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Case Order Type of gaps Type of noise SNR

1

1
Random Spatially corr. 1.44

Spatially corr. Spatio-temporally corr. 1.47

2
Random Spatially corr. 1.45

Spatially corr. Spatio-temporally corr. 1.24

2

3
Random Spatially corr. 1.61

Spatially corr. Spatio-temporally corr. 1.43

4
Random Spatially corr. 1.46

Spatially corr. Spatio-temporally corr. 1.24

- Random Spatially corr. 1.7

3 multi
Random Spatially corr. 1.4

Corr. Spatio-temporally corr. 1.4

TABLE II: Experiments setups of case 1, case 2 and case 3
with 30% of gaps and an initialization by the spatial mean.
"Corr." refers to correlated. To test the impact of SNR and the
quantity of gaps, more experiments are drawn with SNR values
from 0.5 to 4.5 and gap quantities from 0% to 80%. In these
cases, three values of initialization are tested: spatial mean,
spatial mean plus random noise and spatial mean plus spatially
correlated noise to highlight the impact of initialization on the
reconstruction.

and 2) it does not require knowledge on the noise present in
the data.

Results of the reconstruction of the first and second order
fields g1 and g2 are presented in Fig. 2 (Case 1). Fig. 4
illustrates the results of the third (g3), fourth order (g4) and
post-seismic displacement fields (g5) (Case 2). Fig. 5 shows
time series associated with the fields of cases 1 and 2. Finally,
Fig. 7 shows the results for the multi-target displacement field
(g6) (Case 3).

b) Case 1 - first and second order fields: in this case,
the optimal number of EOF modes is estimated to be 1
for the first order field and 2 for the second order field.
The reconstructed fields show a displacement pattern in good
agreement with the true field, without degradation by the
missing data in both cases of random (Fig. 2 (a)(c)) and
correlated (Fig. 2 (b)(d)) gaps, which is also confirmed by
the similarity between residuals and noise. The reconstructed
field is however more affected by spatio-temporally correlated
noise, part of which can still be observed in the reconstruction.
Fig. 5 (a)(b) shows the initial and reconstructed time series of
some spatial points in the second order field case. This result
shows that the EM-EOF method is able to reconstruct temporal
evolution trends which suggests, together with results in Fig. 2,
its capacity to interpolate in both space and time dimensions.
Fig. 2 (d) and Fig. 5 (a) also show the reconstruction result
with unwrapping errors. New estimated values at the phase
jumps location are in accordance with the overall displacement
field, and residuals indicate that phase jumps are filtered out
by the EM-EOF method, which is mainly explained by the fact
that such high frequency events are represented in higher EOFs
modes. Cross-RMSE in function of gaps percentages and SNR
in the cases of the first and second order displacement fields
perturbed by spatio-temporally correlated noise are shown in

Fig. 3. It is observed that the reconstruction performance
is mainly affected by SNR compared to the quantity of
gaps, except for large quantities (> 60%) of random gaps
(Fig. 3 (a)(c)). Note that random gaps affect more the recon-
struction quality than correlated gaps (Fig. 3 (b)(d)) because
gaps are only simulated over ten consecutive displacement
maps in the latter. Actually, a large quantity of random gaps
also means a larger probability that a data point might be
missing over n consecutive displacement maps. If we call P
this probability, it can be computed as P = (q/100)n where
q is the percentage of data gaps. With n = 40, P is almost
negligible for q < 60%, which is consistent with the observed
smaller cross-RMSE.

c) Case 2 - third, fourth order fields and post-seismic
deformation: in this case, the optimal number of EOF modes
is 3 for the third order field, 5 for the fourth order field and
2 for the post-seismic field (Fig. 4). In all cases, a global
agreement is observed between the reconstructed and true
fields in both space and time, even in the presence of phase
unwrapping errors perturbations as shown in Fig. 5 (c)(d). In
the case of the fourth order field, a part of the displacement
signal is observed in the residual, but the amplitude remains
small, and the reconstructed field still contains noise. As a
matter of fact, the choice of the optimal number of EOF modes
is more challenging when complex displacement signal is
perturbed by noise, especially when the SNR is low and when
displacement and noise behaviours are similar. Here, strong
spatio-temporally correlated noise perturbing the field can lead
to an over-estimation of the number of EOF modes, which is
mainly explained by the fact that both noise and displacement
signal are correlated in space and time, which makes them
difficult to separate. In this case, parameter β (see section II-F)
can be increased to avoid the over-estimation. Error maps of
the third and fourth displacements fields in function of SNR
and quantity of gaps show that large quantities of gaps affect
more the reconstruction in the case of randomly distributed
gaps (Fig. 6 (a)(c)), particularly when the displacement is more
complex as in the case of a fourth order field (Fig. 6 (c)).
With 30% of data gaps, the quality of the reconstruction only
depends on the SNR in all cases. In the case of the post-seismic
deformation, Fig. 6 (e)(f) shows that the method is slightly
less sensitive to large quantities of random gaps compared to
correlated gaps.

d) Case 3 - multiple pattern fields: : each displacement
field is composed of a linear displacement field g1, two third
order fields g3 and one fourth order field g4. First, one recon-
struction of the whole spatial field is performed. The missing
values are initialized by the spatial mean. The optimal number
of EOF modes is 4 for a field perturbed by both random gaps
and spatially correlated noise (Fig. 7 (a)) and 6 for a field
perturbed by correlated gaps and spatio-temporally correlated
noise (Fig. 7 (b)). In both cases, the reconstruction shows
satisfactory patterns compared to the true field. Transitions
between patterns are preserved even in the case of correlated
gaps which extend across all spatial patterns, but residuals
still show a small part of the fourth order displacement. In
the case of correlated gaps, the linear field is slightly over-
reconstructed, that is a part of the perturbing noise is also
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Fig. 2: Result of the reconstruction of displacement fields [cm] of (a) (b) first order and (c) (d) second order containing 30% of
missing data and with 1.24 ≥ SNR ≥ 1.44. Displacement fields are perturbed by (a) (c) random gaps and spatially correlated
noise, and (b) (d) correlated gaps and spatio-temporally correlated noise. In (d), unwrapping errors are simulated as phase
jumps (red circles). The residual is the difference between the reconstructed field and the perturbed field.
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Fig. 3: Cross-RMSE [cm] as a function of % gaps and SNR in
case of a first order displacement time series with (a) random
gaps and (b) correlated gaps, and a second order displacement
time series with (c) random gaps and (d) correlated gaps. All
displacement time series are perturbed by spatio-temporally
correlated noise.

reconstructed. For comparison, 4 independent reconstructions
for each displacement pattern with different optimal number
of EOF modes have also been performed. The results are
shown in Fig. 8. In the reconstructed field, the displacement
characteristics of each pattern are more preserved. The im-
provement of this multi-reconstruction strategy is highlighted
in case of the fourth order displacement, where all fringes are
now reconstructed. Indeed, when the discontinuities between
displacement patterns are relatively sharp, it is preferred to per-
form the reconstructions separately, particularly in case where
displacement patterns are very different from one to another,
which implies different number of optimal EOF modes for
the reconstruction. When transition zones cannot be clearly
identified (as in most cases of ground displacement fields),
one reconstruction of the whole field is recommended to avoid
possible discontinuities between displacement patterns.

To summarize, the reconstruction quality is more dependent
on the SNR than the quantity of gaps. However, the reconstruc-
tion quality is driven by both SNR and the quantity of gaps if
gaps are randomly distributed (> 60%). In the case of complex
displacement behaviour, larger cross-RMSE are obtained and
the EM-EOF method is more sensitive to spatio-temporally
correlated noise than spatially correlated noise: in the former
case, the problem of over-estimation of the optimal number
of EOF modes is observed. In case of displacement patterns
with different temporal behaviors, the strategy of multiple
reconstruction can be considered depending on the difference

of displacement behavior between patterns and on the number
of patterns under consideration.

F. Computational burden

As EM-EOF works on temporal covariances, it is rather the
temporal dimension than the spatial dimension that limits its
application. It can deal with pluriannual time series of large
displacement maps without difficulty. To give an example of
the computational burden of the method, we present mean run
times in Table III using an Intel Xeon E5-2650 v3 at 2.3GHz,
which is a standard processor used in regular stations.

Image size
(pixels)

Distance in
Sentinel-1 data (km) Run time (s)

100×100 0.35×2.2 0.07

1000×1000 3.5×22.2 17.1

2000×2000 7×44.4 82.4 (1 min 22.4 s)

4000×4000 14×88.8 295.5 (4 min 55.5 s)

5000×5000 17.5×111 499 (8 min 19 s)

TABLE III: Mean computational run times of the EM-EOF
algorithm for time series of 40 synthetic images with 30% of
missing data.

G. Comparison with other interpolation methods

To evaluate the performance of the EM-EOF method along
with other interpolation methods, a comparison based on
the cross-RMSE (Fig. 9) has been conducted with Nearest
Neighbor Interpolation (NNI) [37] and Kriging [38]. Note
that because the library used for Kriging requires longer
computational time, the experiment has been conducted on
a time series of small synthetic images of size 50 × 50. In
all cases, EM-EOF shows better performance than NNI and
Kriging, especially in the case of low SNR where the gain
is larger. Kriging is also less sensitive to large quantities of
random gaps than EM-EOF and NNI (Fig. 9 (a)) since it is
based on semivariance instead of geometrical distance [39]
(as it is the case of NNI). The surge of EM-EOF cross-RMSE
is due to the increasing unavailability of temporal points in
the time series. In the case of correlated gaps (Fig. 9 (b)),
Kriging performance is close to that of EM-EOF whereas NNI
performs inefficiently.

IV. APPLICATION TO DISPLACEMENT TIME SERIES OF
ALPINE GLACIERS

EM-EOF is applied separately to three displacement mea-
surement time series obtained from a time series of Sentinel-1
A/B SAR images: two time series of 6-day interferograms over
Gorner and Miage glaciers and one 12-day offset time series
over the Argentière Glacier (Fig. 10). Displacement maps,
as well as time series at chosen locations over glaciers are
presented in this section. Since the displacement fields under
consideration are relatively homogeneous, only one covariance
decomposition and one EOF reconstruction are performed for
each glacier. All data sets contain missing data because of
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Fig. 4: Result of the reconstruction [cm] of (a) (b) third order, (c) (d) fourth order, and (e) post-seismic displacement fields
containing 30% of missing data and with 1.24 ≥ SNR ≥ 1.61. Displacement fields are perturbed by (a) (c) (e) random gaps
and spatially correlated noise, and (b) (d) correlated gaps and spatio-temporally correlated noise. The residual is the difference
between the reconstructed field and the perturbed field.
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Fig. 5: Displacement time series of arbitrarily chosen points over (a)(b) a second order field and (c)(d) a third order field.
(a)(c) show results with correlated missing data on 10 consecutive dates and (b)(d) with random missing data (50%). Red line
denotes the true displacement, black circle indicates the perturbed displacement with noise and gaps, black dotted line is the
missing data and gray line is the reconstructed time series. SNR varies from 1.5 to 2.

fast glacier flow and/or snow falls during some acquisitions.
Missing values are initialized by the spatial mean. We choose
to set the number of cross-validation points (randomly chosen)
to 1% of the observed points per displacement map.

A. Gorner Glacier

16 interferograms were computed from consecutive
Sentinel-1 A/B acquisitions between November 2016 and
March 2017. Data gaps are spatially correlated, with quantities
per interferogram varying from 11.8 to 27.4 %. The time
series also contains four missing interferograms. The quality
varies from one interferogram to another, with 12 (out of
16) interferograms being of good quality according to the
coherence.

The optimal number of EOF modes to reconstruct the time
series is estimated to be 3. Representative examples of the
reconstruction are presented in Fig. 11 : case 1 (first row)
contains 14.6% of data gaps, case 2 (second row) is one
missing interferogram (100% of data gaps) and case 3 (third
row) contains 27.4% of data gaps.

In case 1, the reconstructed displacement signal shows
consistent patterns in missing data areas with the overall
displacement field, with a smoother texture in observed areas
compared to the original interferogram, i.e. the reconstruction
does not degrade the displacement pattern. No clear displace-
ment signal is observed in the residual and the major part
of the glacier also shows relatively homogeneous and small
zero-centered residuals. Large residuals are observed close
to the left glacier edges where localized phase unwrapping
errors exist due to abrupt transition between static rock and
ice in motion, as well as discontinuities due to coherence
loss. Results on time series at locations P1, P2 and P3 (see

Fig. 11) show that the reconstructions fit the observed values
even with abrupt fluctuations as in mid-November 2016 and
mid-February 2017 (Fig. 12 (a)). Reconstruction at location
P2, where few observations exist, can be validated by the
nearby location P1 which is substantially more observed than
P2. Note that slight difference is observed between some
observed values and reconstructed values, which is due here
to the noise filtering property of the EOFs. To reconstruct the
missing interferogram (case 2), the temporal mean (instead of
the spatial mean which cannot be computed) is added to the
reconstructed anomaly. The reconstructed displacement pattern
is consistent with those observed on other interferograms in
the time series and also with those obtained in [25]. The
reconstruction of case 3 also shows a consistent displacement
pattern with the initial field. On the original interferogram,
data gaps (due to low coherence) induced phase unwrapping
errors in some localized area, which results in discontinuities
of displacement values in the residuals, where large values
are mainly observed. However, no displacement signal can be
identified in the residual. The means and standard deviations
of residuals on observed and cross-validation points for all
interferograms are shown in Table IV. The means of residuals
are small: less than 0.05 cm on observed points and less than
0.2 cm on cross-validation points for most interferograms. On
one hand, this is consistent with the observations in Fig. 11 that
the EM-EOF method does not degrade the observed points of
good quality. On the other hand, this confirms the capability
of the EM-EOF method to fill in data gaps with accuracy.
Slightly larger values for cross-validation points are mainly
explained by the fact that it represents only a small part of
the total observed points (1%). Moreover, the consistency
between the observed and cross-validation values confirms
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Fig. 6: Cross-RMSE [cm] as a function of % gaps and
SNR in case of a third order displacement time series (a)(b),
fourth order displacement time series (c)(d) and post-seismic
deformation (e)(f). First column are field perturbed by random
gaps, second column by correlated gaps. All displacement time
series are perturbed by spatio-temporally correlated noise.

the robustness of the selected cross-validation data. Most
standard deviation values are smaller than 1 cm on observed
points and 1.8 cm on cross-validation points. Larger standard
deviations for observed points on some interferograms are
mainly explained by localized phase unwrapping errors in
the original interferograms. For cross-validation points, larger
values observed for some interferograms are related to the fact
that the reconstruction quality varies from one point to another
depending on its neighbors both in space and in time.

B. Miage Glacier

13 interferograms were produced from 14 consecutive ac-
quisitions from December 2016 to March 2017. The quantity
of gaps varies from 11.4 to 23.1 % and many interferograms
are concerned with data gaps in the central part of the
glacier. There are also three missing interferograms in the
displacement time series. Note that the long and narrow shape
of the glacier, in addition to discontinuities due to coherence
loss, make the phase unwrapping challenging: 5 interferograms
out of 13 are concerned with phase jumps during phase
unwrapping. The correction of such phase jumps is difficult

since no other data set with similar spatial coverage and
measurement accuracy is available.

Representative examples of the reconstruction are presented
in Fig. 13. Case 1 (first row) contains 12.3% of data gaps,
case 2 (second row) contains 18.6% of data gaps and case 3
(third row) contains 23.1% of data gaps. The estimated optimal
number of EOF modes is 2. A global agreement is obtained
between the reconstructed and the original interferograms. In
case 1, the residual field is homogeneous but with the presence
of clear discontinuties between segments of the glacier. This
is due to phase jumps in the original interferogram because of
coherence loss in the central part of the glacier. Time series of
a point located in the discontinuity zone (P2, Fig. 13) and its
reconstruction P̂2 are plotted in Fig. 12 (b), showing a similar
behavior with errors falling within the range of nominal InSAR
accuracy (<1cm). Note that most of the value shifts between P2

and P̂2 are explained by unwrapping errors in the discontinuity
zone at these dates (Fig 13).

In case 2, the displacement pattern is reconstructed with
success, with some discontinuous values at the separation of
the two terminal lobes, i.e. where most data gaps are observed
in the time series. Reconstructed time series of a point located
in this area (P1) is also shown in Fig. 12 (b). Thanks to
other interferograms where no phase jump is observed, EM-
EOF reconstructs interferograms with phase jumps corrected.
Case 3 presents a strongly degraded interferogram, with large
quantities of data gaps and phase jumps. The reconstructed
interferogram has a displacement pattern in accordance with
other interferograms of good quality, although its amplitude
seems slightly lower compared to the initial displacement field
at the entry of the terminal lobes. The means and standard
deviations of residuals of all interferograms are given in
Table IV. The global observations are the same as in the
case of the Gorner Glacier. In this case, the residuals are
zero-centered for most interferograms (less than 0.01 cm in
observed parts and less than 0.3 cm in cross-validation points).
Moreover, the standard deviation values in this case are larger,
which is mainly related to phase jumps and localized phase
unwrapping errors. Besides the ability of gap filling, the EM-
EOF method can also detect and correct displacement signal
inconsistencies on individual interferograms in the time series.

C. Argentière Glacier

65 12-day interval displacement maps were generated using
66 Sentinel-1 A/B images between October 2016 and Decem-
ber 2017 using offset tracking.

The general quality of this data set is degraded compared
to previous data sets because of very low SNR and strong
correlated gaps in space and time. Due to the orientation of
the glacier, the displacement is larger in the azimuth direction
than in the LOS direction. Therefore, only the displacement
time series in the azimuth direction is considered here. The
quantity of gaps per displacement map varies from 2 % to
almost 50 %. To show why this application is challenging,
cross-RMSE E(k) in function of the number of EOF modes
k used in the reconstruction are displayed in Fig. 14. The
minimum of E(k) is found at k = 58 EOF modes, which
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Fig. 7: Result of the reconstruction of a multiple pattern field [cm] perturbed by 30% of missing data and with SNR = 1.6. Top
pattern is a linear field, middle patterns are three order fields (see Table I) and bottom pattern is a fourth order field. Displacement
fields are perturbed by (a) random gaps and spatially correlated noise and (b) correlated gaps and spatio-temporally correlated
noise. The residual is the difference between the reconstructed field and the perturbed field.

Fig. 8: Result of the 4 independent reconstructions of the multiple pattern fields [cm] showed in Fig. 7. Numbers are the
estimated optimal number of EOF modes for each pattern. As in Fig. 7, displacement fields are perturbed by (a) random gaps
and spatially correlated noise and (b) correlated gaps and spatio-temporally correlated noise.
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Gorner Miage

Observed Cross-validation Observed Cross-validation

Date Mean σ Mean σ Mean σ Mean σ

2016/11/11-2016/11/17 0.028 0.741 0.114 1.043

2016/11/17-2016/11/23 x x x x

2016/11/23-2016/11/29 0.089 0.951 0.046 1.724

2016/11/29-2016/12/05 0.008 0.814 0.088 1.369 0.015 0.984 -0.134 0.974

2016/12/05-2016/12/11 0.048 0.808 -0.158 1.273 0.0008 1.068 -0.029 0.920

2016/12/11-2016/12/17 -0.005 0.662 0.057 1.191 0.002 0.720 -0.058 0.632

2016/12/17-2016/12/23 0.045 0.859 0.024 1.342 0.002 0.885 0.173 0.904

2016/12/23-2016/12/29 0.022 0.921 -0.072 1.419 -0.004 1.029 0.051 1.186

2016/12/29-2017/01/04 -0.048 0.721 -0.05 0.856 0.011 1.137 -0.056 0.773

2017/01/04-2017/01/10 0.0006 0.863 -0.022 1.108 0.001 0.837 0.016 0.825

2017/01/10-2017/01/16 x x x x x x x x

2017/01/16-2017/01/22 -0.031 0.667 0.015 0.593 -0.0003 0.935 0.015 0.959

2017/01/22-2017/02/28 x x x x -0.002 1.396 -0.103 1.329

2017/01/28-2017/02/03 -0.034 0.869 0.09 0.968 -0.008 1.030 -0.083 1.039

2017/02/03-2017/02/09 -0.001 0.906 -0.083 1.518 x x x x

2017/02/09-2017/02/15 -0.085 1.032 -0.219 1.782 0.003 1.091 -0.046 0.804

2017/02/15-2017/02/21 -0.011 0.884 -0.118 1.462 -0.009 1.042 0.232 1.029

2017/02/21-2017/02/27 -0.034 0.749 0.002 1.038 -0.032 1.070 -0.074 1.208

2017/02/27-2017/03/05 x x x x x x x x

2017/03/05-2017/03/11 0.004 1.228 0.026 1.374

TABLE IV: Mean (cm) and standard deviation σ (cm) of the residual fields on observed and cross-validation points over
Gorner and Miage glaciers. The ’x’ symbol refers to missing interferograms.
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Fig. 9: Mean cross-RMSE [cm] of EM-EOF, NNI and Kriging
in function of gaps quantity and SNR from 100 simulations.
(a) random gaps, SNR = 2, spatially correlated noise, (b)
correlated gaps, SNR = 2, spatially correlated noise, (c)
spatially correlated noise, 30% missing data, random gaps, (d)
spatio-temporally correlated noise, 30% missing data, random
gaps.

is mainly due to strong mixing between displacement signal
and noise. A large proportion of EOF modes are dominated
by correlated noise and are interpreted as displacement signal,
which makes the error decrease each time one EOF mode
is added to the reconstruction. Results of the reconstructed
displacements at three time intervals are presented in Fig. 15
with 20 EOF modes, which is the result after stage 2 and
corresponds to a local minimum of E(k) (after this minimum,
the variation of the error is small). Cases 1, 2 and 3 (first,
second and third lines) contain respectively 7.39%, 7.42%
and 4.12% of data gaps. Reconstructed offsets show a global
agreement with initial displacement fields. In missing data
areas, reconstructed values can be sometimes questionable:
in cases 2 and 3, reconstructed values in the bottom left
and middle parts of the displacement field differ from the
neighboring values and mark clear discontinuities. As shown
in section III, the reconstruction quality depends more on SNR
than on the quantity of gaps. Hence, discontinuities between
missing data areas and neighboring areas are the result of low
SNR since data gaps are not significant in this case (< 10%).

D. Comparison with NNI and Kriging

The performance of the EM-EOF in case of real data
is assessed by comparing the reconstruction results with
NNI/Kriging over the Gorner Glacier. In Miage and Argentière
time series, large amount of phase jumps and low SNR do not
allow for an objective comparison with NNI/Kriging which
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Fig. 10: Location of Gorner, Miage and Argentière glaciers. Gorner Glacier is located is the Valais, Swiss Alps, Miage and
Argentière glaciers are located in the Mont-Blanc Massif, respectively in the Italian and French Alps.
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Fig. 11: a) Original, b) reconstructed interferograms and c) residuals (reconstruction-original) in radar geometry over the Gorner
glacier at three time intervals (2016/12/23-2016/12/29, 2017/01/10-2017/01/16, 2017/01/16-2017/01/22). Time series of points
at locations P1, P2 and P3 are shown in Figure 12. Displayed values are in centimeters in the radar LOS.
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Fig. 12: Time series of displacement measurement in radar LOS over Gorner Glacier (left) and Miage Glacier (right) at different
locations P1, P2 and P3 (Fig. 11, Fig. 13) and their reconstructions P̂1, P̂2 and P̂3 by the EM-EOF method. Circles represent
existing values in the time series whereas lines are reconstructed values.
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Fig. 13: a) Original, b) reconstructed interferogram and c) residual (reconstruction-original) in radar geometry over Miage
glacier at three time intervals (2016/12/11-2016/12/17, 2016/12/29-2017/01/04 and 2017/02/21-2017/02/27). Temporal evolution
of points at locations P1 and P2 are shown in Figure 12. Displayed values are in centimeters in the radar LOS.
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Fig. 14: Cross-RMSE E(k) versus number of EOF modes k
used in the reconstruction in case of the Argentière Glacier.
The minimum of E(k) is reached for k = 58 (stage 1). Result
after stage 2 gives 20 EOF modes, which is a local minimum
of E(k).

are poorly adequate in these cases. Fig. 16 shows an example
over interferogram 2017/01/16-2017/01/22. Note that due to
Kriging extensive runtime, the comparison is performed on
the top part of the glacier, where localized phase unwrapping
errors and correlated data gaps exist. Similar conclusions are
obtained as in synthetic simulations: the EM-EOF method pro-
vides significant better interpolation compared to NNI/Kriging,
especially in areas with correlated data gaps and phase jumps
where smoother and consistent reconstruction is obtained.

V. CONCLUSION

EM-EOF is a 2-stage iterative method based on the eigen-
value decomposition of the temporal covariance to retrieve
missing values in time series of SAR-derived displacement
measurement. After an initial filling of the missing values by
the spatial mean, this method finds the optimal number of EOF
modes to reconstruct the incomplete time series using adaptive
cross-validation. Then, it proceeds to an update of the missing
values until the convergence of the cross-RMSE is reached.

Synthetic simulations with a thorough error analysis have
been carried out to show the efficiency of the method and to
determine its sensitivity to the complexity of the displacement
signal, the type of noise, SNR, the quantity and the type
of gaps. It has been shown that EM-EOF is more sensitive
to noise than gaps, except with large quantities of random
data gaps which can significantly affect the quality of the
reconstruction. When noise is spatio-temporally correlated, the
optimal number of EOF modes can be over-estimated because
of the difficulty in separating displacement signal and noise
due to similar behaviors.

Real data applications confirm the efficiency of the EM-EOF
method, with the possibility to handle challenging missing
data cases as complete missing interferograms, correlated
data gaps, low SNR and phase jumps. In this way, the EM-
EOF method can help to increase the effective size of the

time series, and can thus facilitate the understanding of the
phenomenon under observation, particularly when data gaps
in displacement time series is a frequent issue. The last appli-
cation over the Argentière Glacier shows a limiting condition
on the data (low SNR) for EM-EOF to be fully operative,
that is when the displacement signal is stronly contamined
with noise induced here by the computation uncertainties of
surface velocities due to low spatial resolution (22 m in the
azimuth direction in interferometric mode) and insufficiently
large displacement.

Future works will include 1) estimating a spatio-temporal
covariance matrix [23], [40] instead of a temporal covariance
matrix in order to better characterize propagating spatio-
temporal structures in the signal and 2) apply EM-EOF to
complex interferogram time series, i.e. reconstruct missing
values before phase unwrapping to improve low SNR and
discontinuities issues in order to facilitate phase unwrapping.
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APPENDIX
SYNTHETIC CONSTRUCTION OF SPATIALLY AND

SPATIO-TEMPORALLY CORRELATED NOISE

Spatially correlated noise is generated using an auto-
correlation function of the form c(z) = z−γ , where the
variation of parameter γ allows to tune the correlation distance.
The value of c(z) represents the degree of correlation of two
points distant from z. This function is then used to filter and
modulate a white Gaussian noise in the Fourier domain.

Spatio-temporally correlated noise is the sum of a spatially
correlated noise and a temporally correlated noise. The former
is generated as previously described, and the latter is formed
using a Cholesky decomposition of a positive semi-definite
temporal covariance matrix R which verifies:

E[ZZT ] = R (11)

where Z ∈ Rn×p is the desired correlated noise and E[.]
denotes the expectation operator. The elements of matrix R at
position (i, j) are given by:

(rij)1≤i≤n,1≤j≤n = ρ|i−j| (12)

where parameter ρ falls in the [0, 1] interval and acts as a tuner
of the time correlation: a value of 0 means that the simulated
noise is not correlated in time, whereas a value close to 1
means that the noise is fully correlated in time. Matrix R is
positive semi-definite, which allows us to apply a Cholesky
decomposition:

R = LLT (13)

where L and its transpose LT are respectively low and high
triangular matrices. A random n × p matrix Y following a
normal distribution is generated to resolve:

Z = LY (14)
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Fig. 15: a) Original, b) reconstructed offset map and c) residual (reconstruction-original) in radar geometry over the Argentière
glacier at three time intervals (2017/08/26-2017/09/07, 2017/09/19-2017/10/01 and 2017/10/25-2017/11/06). Displayed values
are in meters in the azimuth direction.
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Fig. 16: Reconstructed interferogram [cm] (2017/01/16-
2017/01/22) over Gorner Glacier using a) NNI, b) Kriging
and c) EM-EOF methods.

Z is a n× p matrix where the degree of correlation between
each line is directly tuned by parameter ρ in Eq. (12). To show
that Z has the desired temporal covariance R as in (11):

E[ZZT ] = LE[YYT ]LT = R (15)
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